f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — 08

NAG C Library Chapter Introduction

f08 — Least-squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . .. ... ... ... ... ... ... ... ... ... ... ... ... 3
2 Background to the Problems .. ... ... ... .. .. .. ... .. ........... 3
2.1 Linear Least-squares Problems ... ........... ... ... ... .. ....... 3
2.2 Orthogonal Factorizations and Least-squares Problems . ... ............. 4
2.2.1 QR factorization . . . . . . .. . . . . . e 4
222 LO factorization . . . . . . .. . ... 5
2.2.3 QR factorization with column pivoting . .. ... ... ... ... .......... 5
2.2.4 Complete orthogonal factorization . ........................... 6
2.2.5 Other factorizations . . . .. ... . ... ... 6
2.3 The Singular Value Decomposition . ... ......................... 6
2.4 The Singular Value Decomposition and Least-squares Problems . ......... 7
2.5 Generalized Linear Least-squares Problems . ... ... ................. 7

2.6  Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems . . . . .. . . 8
2.6.1 Generalized QR Factorization . .. ... ... ... .. ... ... 8
2.6.2 Generalized RQ Factorization . ... ... ... .. ... .. ..., 9
2.6.3 Generalized Singular Value Decomposition (GSVD) . ... ............. 10
2.7  Symmetric Eigenvalue Problems . ............. ... .. ... ... ... ... 11
2.8 Generalized Symmetric-definite Eigenvalue Problems . ................ 12
2.9 Packed Storage for Symmetric Matrices . ... ............. .. ....... 13
2.10 Band Matrices . . . ... ... .. 13
2.11 Nonsymmetric Eigenvalue Problems . . ... ....... ... .. ... ......... 13
2.12 Generalized Nonsymmetric Eigenvalue Problem . ................. ... 14
2.13 The Sylvester Equation . ... ...... ... . ... . . . ... .. ... 15
2.14 Error and Perturbation Bounds and Condition Numbers . ............... 15
2.14.1 Least-squares problems . . . . . . . . . ... . ... 16
2.14.2 The singular value decomposition . . ... ... .. ... .. ... .. ........ 17
2.14.3 The symmetric eigenproblem . . . ... ... .. ... .. ... ............ 18
2.14.4 The generalized symmetric-definite eigenproblem . . ... .............. 19
2.14.5 The non-symmetric eigenproblem . . .. ... ... ... .. ... .......... 19
2.14.6 Balancing and condition for the non-symmetric eigenproblem . ... .. ... .. 20
2.14.7 The generalized non-symmetric eigenvalue problem . .. ... ... .. ... ... 20
2.14.8 Balancing the generalized eigenvalue problem . .. ... ... .. .......... 21
2.14.9 Other problems . . . . . . . .. .. 21
2.15 Block Partitioned Algorithms . . ... ...... ... .. ... ... ... ........ 21
3  Recommendations on Choice and Use of Available Functions . ... .. .. 22
3.1 Available Functions . . ... ...... ... .. ... .. 22
3.1.1 Computational functions . . ... ... ... ... ... . .. ... ... 22
3.1.1.1 Orthogonal factorizations . .. ... .. ... .. ... ............. 22
[NP3660/8] 108.1



Introduction — f08 NAG C Library Manual

108.2

3.1.1.2 Singular value problems . ... ........ .. ... ... . . . ...... 23

3.1.1.3 Symmetric eigenvalue problems . . .. ... .................. 23

3.1.1.4 Generalized symmetric-definite eigenvalue problems . ........... 25

3.1.1.5 Nonsymmetric eigenvalue problems . ... .................. 26

3.1.1.6 Generalized non-symmetric eigenvalue problems . . .. ... ... ..... 27

3.1.1.7 Sylvester’s equation . . . . . ... . ...t 28

3.2 NAG Names and LAPACK Names . ............................ 28
3.3 Matrix Storage Schemes . .. ... ... ... .. .. ... 29
3.3.1 Conventional StOTage . . . . . . . . . . i 29

3.3.2 Packed storage . . . . . . .. ... e 30

333 Band Storage . . . ... .. e 31

3.3.4 Tridiagonal and bidiagonal matrices . . ... ...................... 32

3.3.5 Real diagonal elements of complex matrices . . .................... 32

3.3.6 Representation of orthogonal or unitary matrices .. ................. 32

3.4  Argument Conventions . . . ... ..... ... 33
3.4.1 Option arguments . . . . . . . ...t 33

3.4.2 Problem dimensions . . . . . . ... ... ... 33
Decision Trees ... ... ... . . ... . . ... 34
4.1 General Purpose Functions (eigenvalues and eigenvectors) . ............. 34
4.2 General Purpose Functions (singular value decomposition) . ............. 39
Index . . ... 39
Functions Withdrawn or Scheduled for Withdrawal ........... .. .. 42
References . ... ... .. .. ... 42

[NP3660/8]



f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

1  Scope of the Chapter

This chapter provides functions for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides functions for:

— solution of linear least-squares problems
— solution of symmetric eigenvalue problems
— solution of non-symmetric eigenvalue problems
— solution of singular value problems
— solution of generalized symmetric-definite eigenvalue problems
— solution of generalized non-symmetric eigenvalue problems
— solution of generalized singular value problems
— solution of generalized linear least-squares problems
— matrix factorizations associated with the above problems
— estimating condition numbers of eigenvalue and eigenvector problems
— estimating the numerical rank of a matrix
— solution of the Sylvester matrix equation
Functions are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to Chapter
f04. The decision trees, at the end of Chapter f04, direct you to the most appropriate functions in Chapters
f04 or f08. Chapters f04 and fO8 contain Black Box (or driver) functions which enable standard linear
least-squares problems to be solved by a call to a single function.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter f02.
The decision trees, at the end of Chapter f02, direct you to the most appropriate functions in Chapters {02
or f08. Chapters f02 and f08 contain Black Box (or driver) functions which enable standard types of
problem to be solved by a call to a single function. Often functions in Chapter f02 call Chapter f08
functions to perform the necessary computational tasks.

The functions in this chapter (f08) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The tables in Section 3 and the
decision trees in Section 4 direct you to the most appropriate functions in Chapter fO8.

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that you will need to read all of the following sections, but rather you will pick out those
sections relevant to your particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (1996).

2.1 Linear Least-squares Problems
The linear least-squares problem is

mini)l(niz&: |6 — Ax||,, (1)

where 4 is an m by n matrix, b is a given m element vector and x is an n element solution vector.
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In the most usual case m > n and rank(4) = n, so that 4 has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(4) =m, there are an infinite number of solutions x which exactly satisfy
b—Ax =0. In this case it is often useful to find the unique solution x which minimizes ||x|,, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank(4) < min(m,n) — in other words, 4 may be rank-deficient —
we seek the minimum norm least-squares solution x which minimizes both ||x||, and ||b — Ax||,.

This chapter (f08) contains driver functions to solve these problems with a single call, as well as
computational functions that can be combined with functions in Chapter f07 to solve these linear least-
squares problems. The next two sections discuss the factorizations that can be used in the solution of
linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of functions are provided for factorizing a general rectangular m by n matrix 4, as the product
of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if O*0Q = I; a complex matrix Q is unitary if Q"0 =I. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

[l = 1Ol

if O is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by
A—Q(IS), if m > n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If 4 is of
full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

1-©00:)(5)

A - QIR’

which reduces to

where Q, consists of the first n columns of O, and O, the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written

A= Q(RR,), ifm<n,
where R; is upper triangular and R, is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m > n and 4 is of full
rank, since

B

2

— Rx
16— dxl, = [|0"b — 0" ||, = H (c‘ & )

where

108.4 [NP3660/8]



f08 — Least-squares and Eigenvalue Problems (LAPACK) Introduction — f08

T
c:(cl): Orb o

] T
0, b
and c¢; is an n element vector. Then x is the solution of the upper triangular system
Rx=c 1-

The residual vector » is given by

r:b—Ax:Q<CO>.
2

The residual sum of squares ||r|,> may be computed without forming  explicitly, since

17l = 116 = Ax[l, = llez]l;-

2.2.2 LQ factorization
The LQ factorization is given by

A=(L 00=(L 0)(8;):LQ1, it m<n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), O, consists of the first m rows of
0, and O, the remaining n — m rows.

The LQ factorization of A4 is essentially the same as the QR factorization of AT (AH if 4 is complex), since

A=(L O)Q<:>AT:QT<LOT>.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax = b where 4 is m by n with m < n and has rank m. The solution is given by

e QT<L_Olb>.

2.2.3 QR factorization with column pivoting

To solve a linear least-squares problem (1) when 4 is not of full rank, or the rank of 4 is in doubt, we can
perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by
A= Q(IS)PT, m > n,

where O and R are as before and P is a (real) permutation matrix, chosen (in general) so that
ril = |rpf = > |r

nn |

and moreover, for each £,

|rkk|2HRky'.j}2a ]:k+1,,n

_(Rn Ri

R= ( 0 R22
where R;, is the leading k by & upper triangular sub-matrix of R then, in exact arithmetic, if rank(4) = &,
the whole of the sub-matrix R,, in rows and columns & + 1 to n would be zero. In numerical computation,

the aim must be to determine an index k, such that the leading sub-matrix R;; is well-conditioned, and R,
is negligible, so that

If we put

[NP3660/8] 108.5



Introduction — f08 NAG C Library Manual

R— Riy R\ _ (Ru Rp
0 Ryn/) \ O 0 )
Then £ is the effective rank of 4. See Golub and Van Loan (1996) for a further discussion of numerical

rank determination.

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization

as
x=P Rl_llél
O b
where ¢, consists of just the first k& elements of ¢ = O'b.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to a
rank-deficient linear least-squares problem, unless R;, = 0. However, by applying for further orthogonal
(or unitary) transformations from the right to the upper trapezoidal matrix (R;; Ry, ), Rj, can be
eliminated:

(R11 Ry, )Z: (T11 0)'

This gives the complete orthogonal factorization

AP — Q(T(;l g)ZT

from which the minimum norm solution can be obtained as
T ¢
x=pPz[| U ).
("

The QL and RQ factorizations are given by

A—Q(g), if m>n,

2.2.5 Other factorizations

and
A=(0 R)Q, ifm<n.

The factorizations are less commonly used than either the QR or LQ factorizations described above, but
have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix 4 is given by
A=Uxv", (A = UXV"in the complex case)

where U and V are orthogonal (unitary) and X' is an m by n diagonal matrix with real diagonal elements,
0;, such that

o202 2 O min(m,n) > 0.

The o; are the singular values of A and the first min(m,n) columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi = o;U; and ATui = 0;V; (Or AHUI' = U,»V,-)
where u; and v; are the ith columns of U and V respectively.

The computation proceeds in the following stages.

108.6 [NP3660/8]
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1. The matrix 4 is reduced to bidiagonal form 4 = U IBVIT if 4isreal (4 =U 1BV11{ if 4 is complex),
where U, and V' are orthogonal (unitary if 4 is complex), and B is real and upper bidiagonal when
m > n and lower bidiagonal when m < n, so that B is non-zero only on the main diagonal and either
on the first superdiagonal (if m > n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B = U,XV3, where U, and V', are orthogonal
and X' is diagonal as described above. The singular vectors of 4 are then U = U,U, and V = V| V5.

If m > n, it may be more efficient to first perform a QR factorization of 4, and then compute the SVD of
the n by n matrix R, since if A = QR and R = UXV", then the SVD of 4 is given by 4 = (QU) XV,

Similarly, if m < n, it may be more efficient to first perform an LQ factorization of 4.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, k, of 4 can be determined as the number of singular values which exceed

a suitable threshold. Let 5 be the leading k£ by k sub-matrix of X, and V be the matrix consisting of the
first £ columns of V. Then the solution is given by

x=VE'e,

where ¢; consists of the first £ elements of ¢ = U Tp = UzTU lTb.

2.5 Generalized Linear Least-squares Problems

The simple type of linear least-squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least-squares problems with equality constraints:
find x to minimize § = ||c — Ax||,”> subjectto Bx =d,

where 4 is m by n and B is p by n, with p <n < m + p. The equations Bx = d may be regarded as a
set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

(5)=(2)

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A4) are to be solved in a least-squares sense. The problem has a unique solution on the

1; has full column rank #. (For linear least-
squares problems with inequality constraints, refer to Chapter e04.)

assumptions that B has full row rank p and the matrix

2. General Gauss—Markov linear model problems:
minimize ||y||, subjectto d = Ax + By,

where 4 is m by n and B is m by p, with n <m < n+p. When B = I, the problem reduces to an
ordinary linear least-squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least-squares problem:

find x to minimize HB_I(d —Ax)||2.

The problem has a unique solution on the assumptions that 4 has full column rank #n, and the matrix
(4, B) has full row rank m. Unless B is diagonal, for numerical stability it is generally preferable to
solve a weighted linear least-squares problem as a general Gauss—Markov linear model problem.
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2.6 Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an » by m matrix 4 and an »n by p matrix B is given by the
pair of factorizations

A=QR and B=0Q0TZ,

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if 4 and B are
complex). R has the form

R= M| Ru ) ifn>m,
n—m 0

or
n m-—n
R:n<R11 Ry, ), if n<m,
where R;; is upper triangular. 7" has the form
p—n n
T:n( 0 T12)9 lfngpy
or

p

r=n-p(Tnh , ifn>p,
p\ Ty

where Ty, or T,; is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of 4 and B implicitly gives the QR
factorization of the matrix B~ 'A4:

B ' =Z7"(T"'R)
without explicitly computing the matrix inverse B~ or the product B~'A.

The GQR factorization can be used to solve the general (Gauss—Markov) linear model problem (GLM)
(see Section 2.5). Using the GQR factorization of 4 and B, we rewrite the equation d = Ax + By as

0'd =0"4x+ 0By
=Rx+TZy.
We partition this as

m p—n+m n—m

(dl> — m R]] x+ m T]] T12 <yl>
dy n—m\ O n—m 0 Ty Y2
di\ _ 4t (y1> _

=0 d, and =Zy.
<d2> © Y2 4

The GLM problem is solved by setting

where

»=0 and y,= Tz_zldz

from which we obtain the desired solutions

_ 0
x:Rnl(dl —Ty,) and y:ZT<y2>-

108.8 [NP3660/8]
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2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix 4 and a p by »n matrix B is given by the
pair of factorizations

A=RQ, B=Z7TQ

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if 4 and B are
complex. (R has the form

n—m m

R:m( 0 Rlz)’ if m<n,

or

R=m=n(Ri ) ifm>n,
n \ Ry

where R, or R,; is upper triangular. 7 has the form

n

r= "Tu), ifp>n,
p—n\ 0

or
p n—p
T:P(Tu T12>’ if p<n,
where T4; is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of 4 and B implicitly gives the RQ
factorization of the matrix 4B '

AB' = (RT HZ"
without explicitly computing the matrix B~ or the product AB™".

The GRQ factorization can be used to solve the linear equality-constrained least-squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and 4 have swapped roles),
written as

B=TQ and A4=ZRQ.
We write the linear equality constraints Bx = d as

TOx =d,

n—-p p X X
p< 0 T12><x2):d where <x2)EQx.

Therefore x, is the solution of the upper triangular system

which we partition as:

Tixy =d.
Furthermore,
|Ax —cll, = ||ZTAx - ZTC||2
= |[ROx=Z%c],
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We partition this expression as:

n—p p
n—p| Ry Rp <x1>_<cl>
P+m—n 0 Ry X2 &)’
where <Cl> =7"c.
(&)

To solve the LSE problem, we set
Ryxy +Ripxy —¢; =0
which gives x; as the solution of the upper triangular system

Ryjxp = ¢; — Rypxsy.

x:QT(2>.

2.6.3 Generalized Singular Value Decomposition (GSVD)

Finally, the desired solution is given by

The generalized (or quotient) singular value decomposition of an m by n matrix 4 and a p by »n matrix
B is given by the pair of factorizations

A=UX[0,RIQ" and B=V5,0,RQ".
The matrices in these factorizations have the following properties:

— Uismbym, Vis pbyp, Qis n by n, and all three matrices are orthogonal. If 4 and B are complex,
these matrices are unitary instead of orthogonal, and Q" should be replaced by Q" in the pair of
factorizations.

— R is r by r, upper triangular and nonsingular. [0, R] is » by n (in other words, the 0 is an » by n — r

zero matrix). The integer r is the rank of (g), and satisfies » < n.

— X, is m by r, X, is p by r, both are real, non-negative and diagonal, and T X, + X5 X, = I. Write
212, =diag(ad,...,a7) and X3 5, = diag(5,..., 3;), where o; and 3, lie in the interval from 0 to
1. The ratios «; /0, ...,a,/(3, are called the generalized singular values of the pair 4, B. If 3, =0,
then the generalized singular value «;/3; is infinite.

2, and X, have the following detailed structures, depending on whether m — 7 > 0 or m —r < 0. In the
first case, m — r > 0, then

k1 kol
k(I 0
= Ilo C and X, = 5(8 ‘;)
m—k—1\0 0 P
Here [ is the rank of B, k=r—1, C and S are diagonal matrices satisfying C*> + S*> =1, and S is
nonsingular. We may also identify oy = - =, =1, oy, =¢; fori=1,...,,, 6, =--- =0, =0, and
Biyi =si fori=1,...,1 Thus, the first k¥ generalized singular values o /3, ..., a;/f; are infinite, and

the remaining / generalized singular values are finite.

In the second case, when m — r < 0,

k m—k k+1—m
5 = k|1 0 0
m—k\O C 0

and

108.10 [NP3660/8]
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k m—k k+1—m

m—k [0 S 0

2y=k+1-m|0 0 1

p—1\0 0 0
Again, [ is the rank of B, k =r —1[, C and S are diagonal matrices satisfying C*+58*=1, and S is
nonsingular, and we may identify o =---=o=1 o4 =c; for i=1,....m—k,
Oy =-=0,=0, By =---=06,=0, By, =s; for i=1,....m—k and 3, ,=---=06.=1
Thus, the first & generalized singular values o, /f,, ..., a; /3, are infinite, and the remaining / generalized

singular values are finite.

Here are some important special case of the generalized singular value decomposition. First, if B is square
and nonsingular, then » = n and the generalized singular value decomposition of 4 and B is equivalent to

the singular value decomposition of AB™', where the singular values of AB™! are equal to the generalized
singular values of the pair 4, B:

AB™' = (UD\RQV) (VZ,RQV) ™ = U(2, 37 1.

Second, if the columns of (ATBT)T are orthonormal, then » = n, R = [ and the generalized singular value

decomposition of 4 and B is equivalent to the CS (Cosine—Sine) decomposition of (ATBT)T:

(5)=(5 7)(2)er

Third, the generalized eigenvalues and eigenvectors of 4'4 — AB'B can be expressed in terms of the
generalized singular value decomposition: Let

-0l )

T,y _(0 0 ToTpy (0 0
XAAX—<0 E}“Zl) and XBBX—(O E}“Ez>‘

Then

Therefore, the columns of X are the eigenvectors of A4 — AB'B, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those

corresponding to the leading n — » columns of X, which span the common null space of A"4 and B'B.
The ‘trivial eigenvalues’ are not well defined.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, )\, and corresponding eigenvectors, z # 0,
such that

Az=Xz, A=AY, where 4 is real.
For the Hermitian eigenvalue problem we have
Az=Xz, A=4"  where 4 is complex.
For both problems the eigenvalues A\ are real.
When all eigenvalues and eigenvectors have been computed, we write
A=27AZ" (or A=zA7Z" if complex),

where A is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem functions is to compute values of A and, optionally,
corresponding vectors z for a given matrix 4. This computation proceeds in the following stages.
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1. The real symmetric or complex Hermitian matrix 4 is reduced to real tridiagonal form T. If A is real
symmetric this decomposition is 4 = QT QT with Q orthogonal and 7" symmetric tridiagonal. If A4 is
complex Hermitian, the decomposition is 4 = QTQ" with Q unitary and T, as before, real symmetric
tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix 7 are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing 7 as T = SAST, where S
is orthogonal and A is diagonal. The diagonal entries of A are the eigenvalues of 7', which are also
the eigenvalues of A4, and the columns of S are the eigenvectors of T'; the eigenvectors of 4 are the

columns of Z = OS, so that A = ZAZ* (ZAZ" when A4 is complex Hermitian).

This chapter supports three primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(1) the divide-and-conquer algorithm;
(i1) the QR algorithm;
(iii) bisection followed by inverse iteration.

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm and is
recommended for computing all eigenvalues and eigenvectors.

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems 4z = ABz, ABz = )z,
and BAz = )z, where 4 and B are real symmetric or complex Hermitian and B is positive-definite. Each of
these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky factorization

of B as either B=LL" or B=U"U (LL" or U"U in the Hermitian case).
With B = LLT, we have
Az = \Bz = (LilALfT) (LTZ) = )\(LTZ).
Hence the eigenvalues of Az = ABz are those of Cy = Ay, where C is the symmetric matrix C = L' 4L "
and y = L'z In the complex case C is Hermitian with C = L7'4L™™ and y= LMz,

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy = )y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.

Type of problem | Factorization of B Reduction Recovery of eigenvectors

1. | Az= \Bz B = LLT, C = L’IAL’T, z= LiTy,

B=U"U c=U"au!' | z=U"Y
2. | ABz = Xz B=1LL", Cc=1L"4L, z=L""y,

B=U'U C=U4U" z=U""y
3. | BAz = )z B=1LL", C=L"AL, z=1Ly,

B=U"U c=vaut |z=U'y

Table 1

Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy = )y, this may then be solved using the functions described in the previous section.
functions are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of
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the standard problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see
Chapter f16).

2.9 Packed Storage for Symmetric Matrices

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length n(n + 1)/2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Functions designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.

If the problem is the generalized symmetric definite eigenvalue problem 4z = A\Bz and the matrices 4 and
B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C thus:

C=X"4X, where X=U"'0 orL "0,
where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when 4 and B are banded, which halves the amount of work required to
form C. Instead of the standard Cholesky factorization of B as U U or LL", we use a split Cholesky

factorization B = S*S , Where
Un >
S =
<M 2 Lo

with U, upper triangular and L,, lower triangular of order approximately n/2; S has the same bandwidth
as B.

2.11 Nonsymmetric Eigenvalue Problems

The non-symmetric eigenvalue problem is to find the eigenvalues, )\, and corresponding eigenvectors,
v #£ 0, such that

Av = dv.
More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u # 0 satisfying
utA = du® (uHA =Xl when u is complex)
is called a left eigenvector of A.
A real matrix 4 may have complex eigenvalues, occurring as complex conjugate pairs.
This problem can be solved via the Schur factorization of A, defined in the real case as
A=27T7",

where Z is an orthogonal matrix and 7 is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of 4. In the complex
case, the Schur factorization is
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A=27T7",
where Z is unitary and 7 is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 < k < n), the first £ columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k& eigenvalues on the diagonal of 7.
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of & eigenvalues
occupy the k leading positions on the diagonal of 7.

The two basic tasks of the non-symmetric eigenvalue functions are to compute, for a given matrix 4, all n
values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A4 is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written 4 = OH QT with Q orthogonal if 4 is real, or 4 = OH QH with QO
unitary if 4 is complex.

2. The upper Hessenberg matrix H is reduced to Schur form 7', giving the Schur factorization H = STS"

(for H real) or H = ST sH (for H complex). The matrix S (the Schur vectors of H) may optionally be
computed as well. Alternatively S may be postmultiplied into the matrix O determined in stage 1, to
give the matrix Z = QS, the Schur vectors of 4. The eigenvalues are obtained from the diagonal
elements or diagonal blocks of T.

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H, and then the eigenvectors can be multiplied by
the matrix Q in order to transform them to eigenvectors of 4. Alternatively the eigenvectors of 7' can
be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized non-symmetric eigenvalue problem is to find the eigenvalues, A, and corresponding
eigenvectors, v # 0, such that

Av = A\Bv.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair (4,B), and a
vector u # 0 satisfying

utA=\"B (uHA = \u''B when u is complex)
is called a left eigenvector of the matrix pair (4, B).

If B is singular then the problem has one or more infinite eigenvalues A = oo, corresponding to Bv = 0.
Note that if 4 is non-singular, then the equivalent problem puAdv = Bv is perfectly well defined and an
infinite eigenvalue corresponds to x = 0. To deal with both finite (including zero) and infinite eigenvalues,
the functions in this chapter do not compute A explicitly, but rather return a pair of numbers («, 3) such
that if 3 #0

A=a/B

and if « #0 and =0 then A =o00. [ is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small 3 rather than an exact zero.

For a given pair (4, B) the set of all the matrices of the form (4 — AB) is called a matrix pencil and A and
v are said to be an eigenvalue and eigenvector of the pencil (4 — AB). If 4 and B are both singular and
share a common null-space then

det(A —AB) =0

so that the pencil (4 — AB) is singular for all . In other words any A can be regarded as an eigenvalue.
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In exact arithmetic a singular pencil will have o« = = 0 for some (o, §). Computationally if some pair
(o, B) is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
(A4, B) defined in the real case as

A=087", B=0r7",

where Q and Z are orthogonal, 7' is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A=08z" B=o0TZ",

where Q and Z are unitary and S and T are upper triangular, with 7 having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

The two basic tasks of the generalized non-symmetric eigenvalue functions are to compute, for a given pair
(4, B), all n values of A and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and
the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair (4,B) is reduced to generalized upper Hessenberg form (H,R), where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be written
as 4 = QIHZIT,B = QlRZlT in the real case with O, and Z; orthogonal, and 4 = QIHZIl{,B = QIRZIl{
in the complex case with O, and Z; unitary.

2. The generalized upper Hessenberg form (H, R) is reduced to the generalized Schur form (S, T') using
the generalized Schur factorization H = QZSZ;, R=0,T ZZT in the real case with O, and Z,
orthogonal, and H = QZSZg,R =0,T Zg in the complex case. The generalized Schur vectors of

(4, B) are given by Q = Q,0,, Z = Z,Z,. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair (S, 7).

3. Given the eigenvalues, the eigenvectors of the pair (S,7) can be computed, and optionally
transformed to those of (H,R) or (4, B).

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation
The Sylvester equation is a matrix equation of the form
AX +XB=C,

where 4, B, and C are given matrices with 4 being m by m, B an n by n matrix and C, and the solution
matrix X, m by n matrices. The solution of a special case of this equation occurs in the computation of the
condition number for an invariant subspace, but a combination of functions in this chapter allows the
solution of the general Sylvester equation.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the functions in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p(n) (or p(m, n)), which grows as a function of the matrix dimension
n (or matrix dimensions m and #). It measures how errors can grow as a function of the matrix dimension,
and represents a potentially different function for each problem. In practice, it usually grows just linearly;
p(n) < 10n is often true, although generally only much weaker bounds can be actually proved. We
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normally describe p(n) as a ‘modestly growing’ function of n. For detailed derivations of various p(n), see
Golub and Van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter f07) and least-squares solvers, we consider bounds on the relative error
|Ix — x||/|lx|| in the computed solution X, where x is the true solution. For eigenvalue problems we
consider bounds on the error |)\,- — 5\,-| in the ith computed eigenvalue 5\,-, where J; is the true ith
eigenvalue. For singular value problems we similarly consider bounds |o; — 7]

Bounding the error in computed eigenvectors and singular vectors v; is more subtle because these vectors
are not unique: even though we restrict ||V;||, = 1 and ||v;||, = 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v; and the
true vector v;, so that

O(v;,v;) = acute angle between v; and ¥; 2)
= arccos|v?f/,»|.

Here arccos(f) is in the standard range: 0 < arccos(f) < w. When 6(v;,V;) is small, we can choose a

constant v with absolute value 1 so that |av; — V||, = 0(v;, ;).

In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where 4 is the matrix. Again, we will use

angle to measure the difference between a computed space S and the true space S:

H(S,:?) = acute angle between S and S
= max min A(s,5) or max min 6(s,5) 3
seSses seSseSs (3)
s#05£0 §£05#0

H(S, S‘) may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.
Similarly let S be an orthonormal matrix with columns spanning S. Then

0(S,S) = arccos oy (SS).

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like ||x — x]| /||x||
and angular errors like 6(¥;,v;) are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol < , or ‘approximately less than’, instead of the usual <. Thus, when these bounds are close to 1
or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

A number of functions in this chapter return error estimates and/or condition number estimates directly. In
other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these estimates,
and a number of the Chapter fO08 example programs, for the driver functions, implement these code
fragments.

2.14.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the x minimizing ||4x — b|[,. Let X be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution ¥ has a small normwise backward error. In other words X minimizes
|(4+ E)x — (b+f)]|l,, where
1£] ||f|2>
ax (122 V2 o e
(|A|2 1611,

and p(n) is a modestly growing function of »n and € is the machine precision.  Let
Ky(A) = Opax (4)/Omin (4), p = ||Ax — b]|,, and sin(0) = p/||b||,. Then if p(n)e is small enough, the
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error X — x is bounded by

If 4 is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the

linear system of equations
I A\(r\ (b
A" 0o )J\x) \o)

By solving this linear system (see Chapter f07) component-wise error bounds can also be obtained
Arioli et al. (1989).

2.14.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (1996)).

The computed SVD, UXV", is nearly the exact SVD of 4 + E, ie., A+ E = (U + 6U)Y(V + 67) is the
true SVD, so that U +6U and 7 +6F are both orthogonal, where |E|,/||4]l, < p(m,n)e,
H(SUH < p(m,n)e, and Héf/H < p(m,n)e. Here p(m,n) is a modestly growing function of m and n and
€ is the machine precision. Each computed singular value &; differs from the true o; by an amount
satisfying the bound

|6; — 01| < p(m,n)eoy.

Thus large singular values (those near ;) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector i; and the true u; satisfies the
approximate bound

9(1:! M') <p(m,n)€||A||2
D) ~ gapl

where

gap; = min |o; — |

is the absolute gap between o; and the nearest other singular value. Thus, if o; is close to other singular
values, its corresponding singular vector #; may be inaccurate. The same bound applies to the computed
right singular vector ¥; and the true vector v;, The gaps may be easily obtained from the computed singular
values.

Let S be the space spanned by a collection of computed left singular vectors {t;,i € I'}, where I is a
subset of the integers from 1 to n. Let § be the corresponding true space. Then
9(5‘, S) ép(’%”)enAHZ'
gapy

where
gopy = min{|o, — ;| for i€ Lj¢ 1}

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space S
even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors {v;,i € I'}.

In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has non-zero entries only on the
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main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the functions in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

|67 — 0] < p(m,n)eo;.
The computed left singular vector i; has an angular error at most about
. m,n)e
R R ALl
relgap;
where

relgap; = m?ién ‘ai - aj’/(oi + o))
JFi

is the relative gap between o; and the nearest other singular value. The same bound applies to the right
singular vector ¥; and v;. Since the relative gap may be much larger than the absolute gap, this error bound
may be much smaller than the previous one. The relative gaps may be easily obtained from the computed
singular values.

2.14.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition ZAZY s nearly the exact eigendecomposition of A+ E, i.e.,
A+E = (2 +6Z)/Al(2 +6Z)T is the true eigendecomposition so that Z+ 6Z is orthogonal, where
IE|,/II4]l, < p(n)e and HéZHz < p(n)e and p(n) is a modestly growing function of n and € is the

machine precision. Each computed eigenvalue \; differs from the true ); by an amount satisfying the
bound

|>‘i - /\i| < p(n)ell 4],
Thus large eigenvalues (those near max |\;| = ||4||,) are computed to high relative accuracy and small ones
may not be.

The angular difference between the computed unit eigenvector z; and the true z; satisfies the approximate
bound

9(2 Z') < P(”)€||A||2
<) ~ gapl

if p(n)e is small enough, where
gap; = min |}, — |
is the absolute gap between \; and the nearest other eigenvalue. Thus, if ); is close to other eigenvalues,

its corresponding eigenvector z; may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let S be the invariant subspace spanned by a collection of eigenvectors {Z;,i € I'}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

9(3 S) <p(n)€||AH2
T gapy

where
gap; = min{|\; — \;| forielj¢l}

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close
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eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace S
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix 7', functions in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson ef al. (1999) for further details.

2.14.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are 4 — A\B, AB — A\l and BA — M. In each case A and B are
real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn, assuming
that functions in this chapter are used to transform the generalized problem to the standard symmetric
problem, followed by the solution of the symmetric problem. In all cases

gap; = min |, — |
is the absolute gap between )\; and the nearest other eigenvalue.
1. A—XB. The computed eigenvalues 5\,~ can differ from the true eigenvalues ); by an amount
3 -1
P‘i - /\i| SP(”)GHB H2||A||2
The angular difference between the computed eigenvector z; and the true eigenvector z; is

p(m)e||B||, 1411, (r2(B)) 2
£gap; .

9(2iazi) ,5

2. AB— Ml or BA— M. The computed eigenvalues 5\1‘ can differ from the true eigenvalues \; by an
amount

‘)\i - )\i’ ,f,p(n)6||B||2||AH2-
The angular difference between the computed eigenvector z; and the true eigenvector z; is

0, =) < LBl Al (r2(8)
1<) ~~ gapl

These error bounds are large when B is ill-conditioned with respect to inversion (k,(B) is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A—AB. Let D =diag (bl_ll/ 2, e ,b,jnl/ 2) be a diagonal matrix. Then replace B by DBD and 4 by
DAD in the above bounds.

2. AB— Xl or BA— M. Let D = diag (bfll/ 2, e J),j,,l/ 2) be a diagonal matrix. Then replace B by DBD
and 4 by D™'AD™" in the above bounds.
Further details can be found in Anderson et al. (1999).

2.14.5 The non-symmetric eigenproblem

The non-symmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. (1999).

We let ;\i be the ith computed eigenvalue and ); the ith true eigenvalue. Let ¥; be the corresponding
computed right eigenvector, and v; the true right eigenvector (so Av; = \;v;). If I is a subset of the integers

from 1 to n, we let \; denote the average of the selected eigenvalues: \; = (ZA,) / <Zl> , and similarly
iel iel

for \;. We also let S; denote the subspace spanned by {v;,i € I'}; it is called a right invariant subspace

because if v is any vector in §; then Av is also in ;. S, is the corresponding computed subspace.

The algorithms for the non-symmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices (4 + E)E, where
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I|E|| < p(n)e||4]]. Some of the bounds are stated in terms of ||E||, and others in terms of ||E||»; one may
use p(n)e for either quantity.

Functions are provided so that, for each (\;, ;) pair the two values s; and sep;, or for a selected subset I of
eigenvalues the values s; and sep; can be obtained, for which the error bounds in Table 2 are true for
sufficiently small ||E||, (which is why they are called asymptotic):

Simple eigenvalue | | N — M| 2 E|,/si

Eigenvalue cluster ’5\1 — )\1’ < NENL /st

Eigenvector 9({9”191.) < IE| g/ sep;

Invariant subspace | 0(S,,S,) < ||E| /seps

Table 2
Asymptotic error bounds for the non-symmetric
eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small ||E||. The
global error bounds of Table 3 are guaranteed to hold for all ||E|| < s x sep/4:

Simple eigenvalue }5\1 — )\[| < n||E|,/s; Holds for all £

Eigenvalue cluster }5\1 — )\1| < 2||E|ly/s1 Requires [|E||» < sy X sepy/4
Eigenvector 9({9“19[) < arctan (2|[E|| ./ (sep; — 4]|El| o/s.)) Requires ||E||p <s; x sep;/4
Invariant subspace | ¢(S;,S;) < arctan(2||E| -/ (sepy — 4||E||p/s1)) | Requires [|E|lp < sp X sep/4

Table 3
Global error bounds for the non-symmetric eigenproblem

2.14.6 Balancing and condition for the non-symmetric eigenproblem

There are two preprocessing steps one may perform on a matrix 4 in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make 4 more nearly upper
triangular (closer to Schur form): 4’ = PAP", where P is a permutation matrix. If 4’ is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to reduce it
to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of 4" more
nearly equal in norm: 4” = DA'D™'. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, 1I/11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.14.7 The generalized non-symmetric eigenvalue problem

The algorithms for the generalized non-symmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs («,3)), eigenvectors and deflating subspaces of slightly
perturbed pairs (4 + E, B + F), where

1(E, F)llp < p(n)ell(4, B)| p-
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2.14.8 Balancing the generalized eigenvalue problem

As with the standard non-symmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair (4, B) in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing function first attempts to permute 4 and B to block upper triangular form by a
similarity transformation:

Fyn Fip Fps

PAPT = F = Fy Fy |,
F33
G Gn Gis

PBP' = G = Gy Gy |,
G33

where P is a permutation matrix, F';;, F33, Gi; and Gz; are upper triangular. Then the diagonal
elements of the matrix (F;,G,;) and (Gs3, Hs3) are generalized eigenvalues of (4,B). The rest of
the generalized eigenvalues are given by the matrix pair (Fy,,G,;). Subsequent operations to
compute the eigenvalues of (4,B) need only be applied to the matrix (F,,, Gy, ); this can save a
significant amount of work if (F,,, Gy,) is smaller than the original matrix pair (4, B). If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing function applies a diagonal similarity transformation to (F,G), to make the rows and
columns of (F,,,G,,) as close as possible in the norm:

[ Fll F12 F13 [
DFD ™' = Dy, Fy Fa Dy :
I F I
1 G G Gy 1
DGD™! = Dy, Gn Gy D5}
I Gs3 I

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9 Other problems

Error bounds for other problems such as the generalized linear least-squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the functions in this chapter use what is termed a block partitioned algorithm. This means
that at each major step of the algorithm a block of rows or columns is updated, and much of the
computation is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are
performed by calls to the Level 3 BLAS (see Chapter fl16), which are the key to achieving high
performance on many modern computers. In the case of the QR algorithm for reducing an upper
Hessenberg matrix to Schur form, a multishift strategy is used in order to improve performance. See
Golub and Van Loan (1996) or Anderson ef al. (1999) for more about block partitioned algorithms and the
multishift strategy.

The performance of a block partitioned algorithm varies to some extent with the block size — that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different functions. Values in the range
16 to 64 are typical.
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On more conventional machines there is often no advantage from using a block partitioned algorithm, and
then the functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the
Level 2 BLAS (see Chapter fl16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

The tables in the following sub-sections show the functions which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG function short name
and the LAPACK function name from which the NAG function long name is derived by prepending nag
(see Section 3.2).

3.1.1 Computational functions

It is possible to solve problems by calling two or more functions in sequence. Some common sequences
of functions are indicated in the tables in the following sub-sections; an asterisk (x) against a function
name means that the sequence of calls is illustrated in the example program for that function.

It should be noted that all the LAPACK computational functions from Release 3 are included in the NAG
C Library and can be called by their LAPACK name*, although not all of these functions are currently
documented in Chapters f07 and f08.

3.1.1.1 Orthogonal factorizations

Functions are provided for QR factorization (with and without column pivoting), and for LQ factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization functions do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional functions are provided to generate all or part of Q explicitly if it
is required, or to apply Q in its factored form to another matrix (specifically to compute one of the matrix

products OC, O*C, CQ or CO" with Q" replaced by Q" if C and Q are complex).

Factorize Factorize Generate Apply
without with pivoting | Matrix Q matrix Q
pivoting
OR factorization, real matrices nag_dgeqrf nag_dgeqpf nag_dorgqr nag_dormqr
(f08aec) (f08bec) (f08afc) (f08agc)
LQ factorization, real matrices nag_dgelgf nag_dorglq nag_dormlq
(f08ahc) (f08ajc) (f08akc)
OR factorization, complex matrices | nag_zgeqrf nag_zgeqpf nag_zungqr nag_zunmgqr
(f08asc) (f08bsc) (f08atc) (f08auc)
LQ factorization, complex matrices | nag zgelqf nag_zunglq nag_zunmlq
(f08avc) (f08awc) (f08axc)

To solve linear least-squares problems, as described in Sections 2.2.1 or 2.2.3, functions based on the QR
factorization can be used:

real data, full-rank problem

complex data, full-rank problem

real data, rank-deficient problem
complex data, rank-deficient problem

f08aec*, f08agc, f16yjc
f08asc*, f08auc, f16zjc
f08bec*, £08agc, f16yjc
f08bsc*, f08auc, f16zjc

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, functions based on the LQ factorization can be used:
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real data, full-rank problem
complex data, full-rank problem

f08ahc*, f16yjc, £08akc
f08avc*, £16zjc, £08axc

3.1.1.2 Singular value problems

Functions are provided to reduce a general real or complex rectangular matrix 4 to real bidiagonal form B
by an orthogonal transformation 4 = QBPT (or by a unitary transformation 4 = QBPH if 4 is complex).
Different functions allow a full matrix 4 to be stored conventionally (see Section 3.3.1), or a band matrix
to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q or P explicitly; additional functions are
provided to generate all or part of them, or to apply them to another matrix, as with the functions for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The functions for reducing band matrices have options to generate Q or P if required.

Further functions are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same functions can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.

Reduce to Generate Apply Reduce band | SVD of
bidiagonal matrix Q matrix Q matrix to bidiagonal
form or PT or P bidiagonal form (QOR
form algorithm)
real matrices nag_ dgebrd nag_dorgbr nag_dormbr nag_dgbbrd nag_dbdsqr
(f08kec) (f08kfc) (fO8kgc) (f08lec) (f08mec)
complex matrices | nag zgebrd nag_zungbr nag_zunmbr nag_zgbbrd nag_zbdsqr
(f08ksc) (fO8ktc) (f08kuc) (f08lsc) (f08msc)

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors
complex matrix, singular values and vectors

f08kec, £08kfc*, fO8mec
f08ksc, £08ktc*, f08msc

Rectangular matrix (banded)

f08lec
f08lsc

real matrix, singular values and vectors
complex matrix, singular values and vectors

To use the singular value decomposition to solve a linear least-squares problem, as described in
Section 2.4, the following functions are required:

real data: f08kec, f08kgc, f08kfc,
f08mec, fl6yac
f08ksc, f08kuc, f08ktc,

f08msc, f16zac

complex data:

3.1.1.3 Symmetric eigenvalue problems

Functions are provided to reduce a real symmetric or complex Hermitian matrix 4 to real tridiagonal form
T by an orthogonal similarity transformation 4 = QT QT (or by a unitary transformation 4 = QT QH if 4 is
complex). Different functions allow a full matrix 4 to be stored conventionally (see Section 3.3.1) or in
packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q explicitly; additional functions are
provided to generate Q, or to apply it to another matrix, as with the functions for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A4;
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application of O to another matrix is required after eigenvectors of 7 have been found by inverse iteration,
in order to transform them to eigenvectors of 4.

The functions for reducing band matrices have an option to generate Q if required.

Reduce to Generate Apply matrix
tridiagonal matrix Q
form
real symmetric matrices nag_dsytrd nag_dorgtr nag_dormtr
(fo8fec) (fosfte) (f08fgc)
real symmetric matrices (packed storage) nag_dsptrd nag_dopgtr nag_dopmtr
(f08gec) (f08gfc) (f08ggc)
real symmetric band matrices nag_dsbtrd
(f08hec)
complex Hermitian matrices nag_zhetrd nag_zungtr nag_zunmtr
(f08fsc) (f08ftc) (f08fuc)
complex Hermitian matrices (packed storage) | nag zhptrd nag_zupgtr nag_zupmtr
(f08gsc) (f08gtc) (f08guc)
complex Hermitian band matrices nag_zhbtrd
(fO8hsc)

A variety of functions are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix 7, some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same functions can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) f08jfc
all eigenvalues (root-free QR algorithm called by divide-and-conquer)  £08jcc
selected eigenvalues (bisection) £08jjc
The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (OR algorithm) f£08jec
all eigenvalues and eigenvectors (divide-and-conquer) £08jcc
all eigenvalues and eigenvectors (positive-definite case) £08jgc
selected eigenvectors (inverse iteration) £08jkc
The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) f08jsc
all eigenvalues and eigenvectors (positive-definite case) f£08juc
selected eigenvectors (inverse iteration) f08jxc

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors
Real Symmetric matrix (standard storage)

f08fcc
f08fec, f08ffcx, f08jec
f08fec, £08jjc, £08jkc,
f08fgc*

all eigenvalues and eigenvectors (using divide-and-conquer)
all eigenvalues and eigenvectors (using QR algorithm)
selected eigenvalues and eigenvectors (bisection and inverse iteration)
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Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08gcc

all eigenvalues and eigenvectors (using QR algorithm) f08gec, f08gfc*, £08jec

selected eigenvalues and eigenvectors (bisection and inverse iteration) f£08gec, £08jjc, £f08jkc,
£08ggcx*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) f£08hcc

all eigenvalues and eigenvectors (using QR algorithm) f08hec*, f08jec

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08fqc

all eigenvalues and eigenvectors (using QR algorithm) f08fsc, f08ftc*, £08jsc

selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fsc, £08jjc, f08jxc,
£08fucx*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) £08gqc

all eigenvalues and eigenvectors (using QR algorithm) f08gsc, f08gtc*, £08jsc

selected eigenvalues and eigenvectors (bisection and inverse iteration) f£08gsc, £f08jjc, £08jxc,
£08gucx*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) £08hqc

all eigenvalues and eigenvectors (using QR algorithm) f08hsc*, f08jsc

3.1.1.4 Generalized symmetric-definite eigenvalue problems

Functions are provided for reducing each of the problems Ax = ABx, ABx = Ax or BAx = Ax to an
equivalent standard eigenvalue problem Cy = A\y. Different functions allow the matrices to be stored either
conventionally or in packed storage. The positive-definite matrix B must first be factorized using a
function from Chapter f07. There is also a function which reduces the problem Ax = ABx where 4 and B
are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization
for which a function in Chapter f08 is provided.

Reduce to standard Reduce to standard Reduce to standard

problem problem (packed problem (band
storage) matrices)
real symmetric matrices nag_dsygst (f08sec) nag_dspgst (f08tec) nag_dsbgst (f08uec)

complex Hermitian matrices | nag_zhegst (f08ssc) nag_zhpgst (f08tsc) nag_zhbgst (f08usc)

The equivalent standard problem can then be solved using the functions discussed in Section 3.1.1.3. For
example, to compute all the eigenvalues, the following functions must be called:

real symmetric-definite problem f07fdc, f08secx*, f08fec,
f08jfc

real symmetric-definite problem, packed storage f07gdc, f08tec*, f08gec,
£08jfc

real symmetric-definite banded problem f08ufc*, fO8uec*, fO8hec,
f08jfc

complex Hermitian-definite problem f07frc, £f08ssc*x, f08fsc,
f08jfc

complex Hermitian-definite problem, packed storage f07grc, f08tscx, £08gsc,
f08jfc

complex Hermitian-definite banded problem f08utc*x, fO8uscx, f08hsc,
f08jfc
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If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; functions from Chapter f16
may be used for this.

3.1.1.5 Nonsymmetric eigenvalue problems

Functions are provided to reduce a general real or complex matrix 4 to upper Hessenberg form H by an

orthogonal similarity transformation 4 = QHQ" (or by a unitary transformation 4 = QHQO" if 4 is
complex).

These functions do not form the matrix Q explicitly; additional functions are provided to generate Q, or to
apply it to another matrix, as with the functions for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of QO to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Functions are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion functions are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to Generate Apply matrix | Balance Back-
Hessenberg matrix Q (0] transform
form vectors after
balancing
real matrices nag_dgehrd nag_dorghr nag_dormhr nag_dgebal nag_dgebak
(f08nec) (f08nfc) (f08ngc) (f08nhc) (f08njc)
complex matrices | nag_zgehrd nag_zunghr nag_ zunmhr nag_zgebal nag_ zgebak
(f08nsc) (f08ntc) (f08nuc) (f08nvc) (f08nwc)

Functions are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

Eigenvalues and | Eigenvectors Eigenvectors Sensitivities of
Schur from Hessenberg | from Schur eigenvalues and
factorization (QR | form (inverse factorization eigenvectors
algorithm) iteration)

real matrices nag_ dhseqr nag_dhsein nag_dtrevc nag_dtrsna
(f08pec) (f08pkc) (f08qkce) (f08qlc)

complex matrices | nag_zhseqr nag_zhsein nag_ztrevc nag_ztrsna
(f08psc) (f08pxc) (f08qxc) (f08qyc)

Finally functions are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The functions nag dtrexc (f08qfc) and nag ztrexc
(f08qtc) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve a
desired order. The functions nag_dtrsen (f08qgc) and nag_ztrsen (f08quc) perform the whole reordering
process for the important special case where a specified cluster of eigenvalues is to appear at the top of the
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis of the
invariant subspace corresponding to the specified cluster of eigenvalues. These functions can also compute
the sensitivities of the cluster of eigenvalues and the invariant subspace.
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Reorder Schur factorization Reorder Schur factorization, find
basis of invariant subspace and

estimate sensitivities

real matrices nag_dtrexc (f08qfc) nag_dtrsen (f08qgc)

complex matrices | nag_ztrexc (f08qtc) nag_ztrsen (f08quc)

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization
real matrix, all eigenvalues and selected eigenvectors

f08nec, f08nfcx, £08pec
f08nec, f08pec, f08pkc,
£08ngc

f08nhc*, f08nec, f08nfc,
£08pec, f08pkc, f08njc
f08nsc, f08ntc*, £08psc
f08nsc, f08psc, f08pxc,
£08nucx*

f08nvc*, £08nsc, f08ntc,
f08psc, £08pxc, £08nwc

real matrix, all eigenvalues and eigenvectors (with balancing)

complex matrix, all eigenvalues and Schur factorization
complex matrix, all eigenvalues and selected eigenvectors

complex matrix, all eigenvalues and eigenvectors (with balancing)

3.1.1.6 Generalized non-symmetric eigenvalue problems

Functions are provided to reduce a real or complex matrix pair (4;,R;), where 4, is general and R, is
upper triangular, to generalized upper Hessenberg form by orthogonal transformations A; = QIHZT,
R, = QIRZlT, (or by unitary transformations 4; = QlHZH, R= QIRIZ?, in the complex case). These
functions can optionally return Q, and/or Z;. Note that to transform a general matrix pair (4, B) to the
form (4,R;) a OR factorization of B (B = QRI) should first be performed and the matrix 4; obtained as
A; = 04 (see Section 3.1.1.1 above).

Functions are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.14.8. Companion functions are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Backtransform vectors
after balancing

Reduce to generalized Balance

Hessenberg form

real matrices nag_dgghrd (f08wec) nag_dggbal (f08whc) nag_dggbak (f08wijc)

complex matrices | nag_zgghrd (f08wsc) nag_zggbal (f08wvc) nag_zggbak (f08wwc)

Functions are provided to compute the eigenvalues (as the pairs («, 3)) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Eigenvalues and generalized Schur
factorization (QZ algorithm)

Eigenvectors from generalized Schur
factorization

real matrices

nag_dhgeqz (f08xec)

nag_dtgeve (f08ykc)

complex matrices

nag zhgeqz (f08xsc)

nag_ztgevc (f08yxc)

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors
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real matrix pair, all eigenvalues (with balancing) f08whc, f08aec, f08agc,
fO08wec, £08xec*

real matrix pair, all eigenvalues and generalized Schur factorization f08aec, f08agc, f08afc,
f08wec, f08xec

real matrix pair, all eigenvalues and eigenvectors (with balancing) f08whc, f08aec, f08agc,

f16ghc, f16qfc, f08afc,
f08wec, £f08xec, f08ykcx*,
f08wjc

complex matrix pair, all eigenvalues (with balancing) f08wvc, f08asc, f08auc,
fO8wsc, f08xsc*

complex matrix pair, all eigenvalues and generalized Schur factorization f08asc, f08auc, f08atc,
f08wsc, £08xsc

complex matrix pair, all eigenvalues and eigenvectors (with balancing) f08wvc, f08asc, f08auc,
fi6thc, f16tfc, f08atc,
f08wsc, £08xsc, f08yxcx*,
£08wwc

3.1.1.7 Sylvester’s equation

Functions are provided to solve the real or complex Sylvester equation 4AX = XB = C, where 4 and B are
upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
equation in which 4 and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using functions described in Section 3.1.1.5. For more details,
see the documents for the functions listed below.

solve Sylvester’s equation

real matrices nag_dtrsyl (f08qhc)

complex matrices | nag_ztrsyl (f08qvc)

3.2 NAG Names and LAPACK Names

As well as the NAG function short name (beginning f08-), the tables in Section 3.1 show the LAPACK
function names in double precision.

The functions may be called either by their NAG short names or by their NAG long names which contain
their double precision LAPACK names.

References to Chapter fO8 functions in the manual normally include the LAPACK double precision names,
for example nag_dgeqrf (f08aec). The LAPACK function names follow a simple scheme (which is similar
to that used for the BLAS in Chapter f16). Each name has the structure XYYZZZ, where the components
have the following meanings:

— the initial letter X indicates the data type (real or complex) and precision:

S — real, single precision
D - real, double precision
C — complex, single precision
Z  — complex, double precision

— the 2nd and 3rd letters YY indicate the type of the matrix 4 or matrix pair (4, B) (and in some cases
the storage scheme):

BD - bidiagonal

DI - diagonal

GB - general band

GE - general

GG - general pair (B may be triangular)
HG - generalized upper Hessenberg

HS — upper Hessenberg
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OP - (real) orthogonal (packed storage)

UP — (complex) unitary (packed storage)

OR - (real) orthogonal

UN — (complex) unitary

PT — symmetric or Hermitian positive-definite tridiagonal
SB — (real) symmetric band

HB - (complex) Hermitian band

SP — symmetric (packed storage)

HP — Hermitian (packed storage)

ST — (real) symmetric tridiagonal

SY — symmetric

HE - Hermitian

TG - triangular pair (one may be quasi-triangular)
TR - triangular (or quasi-triangular)

— the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR factorization.

Thus the function nag_dgeqrf performs a QR factorization of a real general matrix in a double precision
implementation of the Library.

3.3 Matrix Storage Schemes
In this chapter the following storage schemes are used for matrices:
— conventional storage in a two-dimensional array;
— packed storage for symmetric or Hermitian matrices;
— packed storage for orthogonal or unitary matrices;
— band storage for general, symmetric or Hermitian band matrices;
— storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapters f16 and f07, but different schemes for
packed, band and tridiagonal storage are used in a few older functions in Chapters f01, 02, f03 and f04.

In the examples below, * indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant leading rows and columns of the arrays.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix 4 is stored in a one-dimensional array a, with matrix element a;; stored column-wise
in array element a[(j — 1) x pda + i — 1] or row-wise in array element a[(i — 1) x pda +, — 1] where pda
is the principle dimension of the array (i.e., the stride separating row or column elements of the matrix
respectively). Most functions in this chapter contain the order argument which can be set to
Nag ColMajor for column-wise storage or Nag RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

For example, when n = 3:

order uplo Triangular matrix A Storage in array a
Nag ColMajor | Nag Upper ay; ap ap aj| * xdjpay * a13073033
a4y
as3
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Nag RowMajor | Nag Upper ay;, ap ap ai1a1aa3 * Ay dyz * *dsz;
dyp axp
as3
Nag_ColMajor | Nag Lower an ai1a21a3] * Ay asz) * *d33
dzr 4

azy 4z ds3

Nag RowMajor | Nag Lower a; aj] * *dy Ay * Az31032033
dz daxp
dz; dz a4z

functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n = 3:

order uplo Hermitian matrix A Storage in array a

Nag_ColMajor | Nag_Upper ap dap aps apy * kajppdyy * d13dyzdss
dpp axp axp
aiz  dyz  dzz

Nag RowMajor | Nag Upper ap;; ap  as aj1a12a13 * Axpdy3 * *d33
ajp dpyp a4y

diz 4y ass

Nag_ColMajor | Nag Lower app Gy as ay10y1a3) * Aydsy * *d33
Ay dsz

azy dazp ds3

Nag_RowMajor | Nag Lower ay ay ay ajp) * *kap a * Az dspdss
ay1 Ay d4x

azy 4z ds3

— N |- | -
5
N~ |~ | ~~—

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and 08,
arrays which hold matrices in packed storage have names ending in P. The storage of matrix elements a;;
are stored in the packed array ap as follows:

if uplo = Nag_Upper then

if order = Nag_ColMajor, a; is stored in ap[(i — 1) +(j — 1)/2] for i <j;
if order = Nag_RowMajor, a; is stored in ap[(j — 1) + (2n —i)(i — 1)/2] for i <

if uplo = Nag_Lower then

if order = Nag_ColMajor, a; is stored in ap[(i — 1) + (2n —j)(j — 1)/2] for j < i
if order = Nag_RowMajor, a; is stored in ap[(j — 1) +i(i — 1)/2] for j < i.

For example:
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order uplo Triangle of matrix {lir A} | Packed storage in array ap
Nag ColMajor | Nag Upper ayy ap ap aj| appdy a13a3a33
N e —
dy 4z
as;s
Nag RowMajor | Nag Upper ay;; ap  aps a11a120ay3 dxds3 A3
e — N
ay a4y
as;z
Nag_ ColMajor | Nag Lower ap aj1ay1das) Axds; ass
N
ay; dxp
dszp dsy  dasz
Nag RowMajor | Nag Lower ap aj| Az dy as1dsass
—— ——
ay; dxp
daszp dsy  dsz

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with k; subdiagonals and k&, superdiagonals may be stored compactly in a notional two-
dimensional array with k; 4+ &, + 1 rows and »n columns if stored column-wise or n rows and k; + k, + 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if %,
k, < n, although the functions in Chapters f07 and f08 work correctly for all values of &k, and k,. In
Chapters f07 and f08 arrays which hold matrices in band storage have names ending in B.

To be precise, elements of matrix elements a;; are stored as follows:

if order = Nag_ColMajor, a; is stored in ab[(k, +i —j) x pdab +;
if order = Nag_RowMajor, a; is stored in ab[(k; 4+ — i) x pdab + i,

where pdab >k, +k,+1 is the stride Dbetween diagonal elements and  where
max(1,i —k;) <j < min(n,i+k,).

For example, when n =5, k;, =2 and k, = 1:

Band matrix 4 Band storage in array ab

order = Nag_ColMajor | order = Nag_RowMajor

* %

ap dp dip dpz  d3yg  dys ap  dp
dy;  dpy 43 ayp 4y dz3 d4q dss * dy;  dpy 43
az; dzy d3z3 Azg ay axp ag asy ¥ az; dzy d3z3 A3y
Qgp  d43  d4q Q45 ay azp asy * * Qg d43  d4q Q45

as3  ds4  dss asy asy ass ¥

The elements marked * in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions.
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Triangular band matrices are stored in the same format, with either k£, = 0 if upper triangular, or £, = 0 if
lower triangular.

For symmetric or Hermitian band matrices with & subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored:

if uplo = Nag_Upper then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + k + i —j];
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab +; — i,

for max(1,j — k) <i<j;
if uplo = Nag_Lower then

if order = Nag_ColMajor, a; is stored in ab[(j — 1) x pdab + i — j;
if order = Nag_RowMajor, a; is stored in ab[(i — 1) x pdab + k +j — i,

for j < i < min(n,j + k),
where pdab > k + 1 is the stride separating diagonal matrix elements in the array ab.

For example, when » =5 and k = 2:

uplo Hermitian band matrix 4 Band storage in array a
order = Nag ColMajor | order = Nag_RowMajor
* *
Nag_Upper ap dp aps a3y  azs ap dp apg
= *
app dyy dy 4y Ay dzz  dzg  G4s ayy Qzz Ay
diz dyz sz Azq  Ass ay Ay Az Aaq  dss a3z 34 Azs
= P *
Qr4 d34 Qa4 dgs Qg4  dgs
= =~ k k
aszs  dgs  dss ass
=~ = %k
Nag_Lower app ax  as app Ay azz Qg4 dss ap
- e *
ayy dxy Az a4y a1 A3y Q43 Asy ay dax
P e * *
azy dzy dzz 443 ds3 az;  dgy  ds3 azy dz az
Qgp Q43 Qa4 ds4 Qgp Q43 g
sz ds4  dss as3  ds4  dss

Note that different storage schemes for band matrices are used by some functions in Chapters f01, f02, {03
and f04.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n — 1 containing the off-diagonal elements. (Older
functions in Chapter {02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by f08 functions are defined by the algorithm to have real diagonal
elements — in QR factorization, for example.

If such matrices are supplied as input to f08 functions, the imaginary parts of the diagonal elements are not
referenced, but are assumed to be zero. If such matrices are returned as output by fO8 functions, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors — also referred to as elementary Householder matrices (usually
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denoted H;). For example,
O = H\Hy - H.

You need not be aware of the details, because functions are provided to work with this representation,

either to generate all or part of Q explicitly, or to multiply a given matrix by Q or O (0" in the complex
case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order » is a unitary matrix of the form
H=1-7mw" 4)

where 7 is a scalar, and v is an 7 element vector, with |7]*||v||,> = 2 x Re(7); v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that A has no such special structure.

There is some redundancy in the representation (4), which can be removed in various ways. The
representation used in Chapter f08 and in LAPACK (which differs from those used in some of the
functions in Chapters f01, f02, f04 and f16) sets v; = 1; hence v; need not be stored. In real arithmetic,
1 <7 <2, except that 7 = 0 implies H = 1.

In complex arithmetic, 7 may be complex, and satisfies 1 < Re(7) <2 and |7 — 1| < 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing 7 to be complex is that, given an arbitrary complex vector x, H can be computed so
that

H% =p(1,0,...,0)"

with real 3. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Argument Conventions
3.4.1 Option arguments

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f08fec(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.
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4

Decision Trees

NAG C Library Manual

The following decision trees are principally for the computation (general purpose) functions.

4.1

Tree 1: Real Symmetric Eigenvalue Problems

General Purpose Functions (eigenvalues and eigenvectors)

Are eigenvalues only

Are all the eigenvalues

Is A tridiagonal? f08jfc or f08jcc ‘

el

required? yes | required? yes
B
. (fO8hec f08jfc) or
?
Is 4 band matrix? ves f08hce
‘no
Is one triangle of A4 (f08gec f08jfc) or
stored as a linear array? |yes f08gcc
lno
| (f08fec fUSjfc) or fO8fec|
no
Is A tridiagonal? E{ f08jjc ‘
B
Is A a band matrix? E{ fOshec O8jjic |
B
Is one triangle of 4 -
stored as a linear array? |yes f08gec fOBjje ‘
oo
f08fec fOSjic \
no
Are all eigenvalues and o o - :
eigenvectors required? |yes Is 4 tridiagonal? ﬁ‘ f08jec or f08jco ‘
oo
Is 4 a band matrix? ves (f08hef%8fg§iec) or
‘no
Is one triangle of 4 (f08gec f08gfc f08jec)
stored as a linear array? |yes or f08gcc
‘no
(fo8fec f08ffc f08jec) or
fO8fcc
no
Is A tridiagonal? E' f08jjc fO8jke |
‘no
Is one triangle of A4 f08gec f08jjc fO8jke
stored as a linear array? |yes f08ggc
‘no
f08fec f08jjc 08jkc
f08fgc
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Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required?

Are all the eigenvalues

yes

required?

yes

Are A and B band
matrices?

Introduction — f08

yes

no

no

Are A and B band

B

Are A and B stored with
one triangle as a linear
array?

fO8ufc f08uec f08hec
f08jfc

yes

[so

f07fdc f08sec fO8fec
f08jfc

fO8ufc f08uec f08hec

Are all eigenvalues and
eigenvectors required?

yes

array?

no

Are A and B band
matrices?

no

f07fdc f08sec fO8fec
fO8ftc f08jec fl6yjc

fO8ufc f08uec fO8hec

yes

‘IIO

Are 4 and B stored with
one triangle as a linear
array?

f08jke fl6yjc

f07gdc fO8tec f08gec

yes

f08jjc f08jkc f08ggc
flé6plc

[ro

f07fdc 08sec fO8fec
f08jjc f08jkc f08fgc
fl6yjc

matrices? yes f08jjc
[oo
Are A. and B storgd with f07gdc f08tec f08gec
one triangle as a linear ..
yes f08jjc
array?
‘ no
f07fdc f08sec f08gec
f08jjc
Are ;4 andl B storT'd with f07gdc fO8tec f08gec
one triangle as a linear oo geope fgiee fl6ple

f07gdc f08tec f08gec
08jfc

Note: the functions for band matrices only handle the problem Ax = ABx; the other functions handle all three
types of problems (4Ax = ABx, ABx = A\x or BAx = \x) except that, if the problem is BAx = Ax and eigenvectors
are required, fl6phc must be used instead of fl6plc and fl6yfc instead of fl6yjc.
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Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required? ves Is A an upper Hessenberg matrix? ﬁ( f08pec
no
f08nhc f08nec fO8pec |
no
Is the Schur factorization of 4 .
0
required? ves Is A an upper Hessenberg matrix? E{ f08pec
no
f08nec f08nfc fO8pec f08njc ‘
no
i ired? ix?
Are all eigenvectors required? ves Is A an upper Hessenberg matrix? ﬁ( f08pec f08qkc
no
f08nhc fO8nec fO8nfc fO8pec
f08qkc f08njc
no
Is A an upper Hessenberg matrix? %‘ f08pec f08pkc
no
fO8nhc f08nec fO8pec f08pke
f08ngc f08njc
Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems
. . Are 4 and B in generalized upper
?
Are eigenvalues only required? yes| Hessenberg form? E{ f08xec
no
f08whc f08aec f08agc f08wec
fO8xec
no
Is the generalized Schur Are A4 and B in generalized upper f08xec
factorization of 4 and B required? | yes | Hessenberg form? yes
no
f08aec f08agc fl6ghc fl6qfc
fo8afc f08wec f08xec fO8yke
no

Are A and B in generalized upper
yes

Hessenberg form? f08xec f08yke

no

f08whc f08aec f08age fl6ghc
fl6qfc fO8afc f08wec f08xec
f08ykc f08wjc
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Tree 5: Complex Hermitian Eigenvalue Problems

;Aef]euiilegd%nvalues only v ;Aezleu;gdghe eigenvalues = Is 4 a band matrix? = (fOShsf% 8fl(l)cfl§ifc) or
[no
Is one triangle of 4 (f08gsc f08jfc) or
stored as a linear array? |yes f08gqc
[0
| (f0sfsc fO8jfe) or f08fqe|
no

Is A a band matrix? ﬁ{ fO8hsc f08jjc ‘

oo

Is one triangle of A —
stored as a linear array? |yes f08gsc f08jjc l
‘no
f08fsc f08jjc |

no
Are all eigenvalues and .o (f08hsc f08jsc) or
eigenvectors required? |yes Is 4 a band matrix? yes fO8hqc
‘no
Is one triangle of 4 (f08gsc 108gtc f08jsc) or
stored as a linear array? |yes f08gqc
‘no
(f08fsc f08ftc f08jsc) or
f08fqc
no
Is one triangle of 4 f08gsc f08jjc 08jxc
stored as a linear array? |yes f08guc
no
fO8fsc 108jjc fO8jxc
fO8fuc
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Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required?

Are all eigenvalues

yes

required?

Are A and B stored with

yes

one triangle as a linear

NAG C Library Manual

f07grc fO8tsc f08gsc

no

no

Are A and B stored with
one triangle as a linear

yes

array?
no
f07frc f08ssc f08gsc
08jjc

Are all eigenvalues and
eigenvectors required?

Are A and B stored with

yes

one triangle as a linear
array?

yes

no

Are A and B stored with
one triangle as a linear
array?

no

f07frc f08ssc f08fsc
fo8ftc f08jsc fl6zjc

f07grc fO8tsc f08gsc

no

f07frc f08ssc fO8fsc
f08jjc f08jxc f08fuc
flézjc

yes

f08jjc fO8jxc f08guc
fléslc

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required?

yes

Is A an upper Hessenberg matrix?

no

no

fO8nvc f08nsc f08psc ‘

required?

Is the Schur factorization of A4

yes

Is A an upper Hessenberg matrix?

array? yes f08jfc
no
f07frc f08ssc fO8fsc
f08jfc
f07grc fO8tsc f08gsc
f08jjc
f07grc fO8tsc f08gsc
f08gtc fl6psc
E{ fO8psc
E‘ fO8psc

no

no

fO8nsc f08ntc fO8psc f08nwe ’

Are all eigenvectors required?

yes

Is A an upper Hessenberg matrix?

s

fO8psc f08qxc

no

no

fO8nve f08nsc f08ntc f08psc
f08qgxc f08nwc

Is A an upper Hessenberg matrix?

f08psc f08pxc

e

no

fO8nuc f08nwc

f08nve f08nsc f08psc f08pxc

108.38

[NP3660/8]



f08 — Least-squares and Eigenvalue Problems (LAPACK)

Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Introduction — f08

. . Are 4 and B in generalized upper
?
Are eigenvalues only required? ves | Hessenberg form? ﬁ( f08xsc
no
f08wvc f08asc f08auc f08wsc
fO8xsc
no
Is the generalized Schur Are 4 and B in generalized upper 08xsc
factorization of 4 and B required? | yes |Hessenberg form? yes
no
f08asc f08auc fl6thc fl6tfc f08atc
f08wsc f08xsc f08yxc
no
Are A and B in generalized upper
Hessenberg form? yes f08xsc f08yxc
no
f08wvc f08asc f08auc fl6the
fl6tfc f08atc f08wsc f08xsc
fO8yxc f08wwc
4.2 General Purpose Functions (singular value decomposition)
Tree 9
Is A a complex matrix? ves Is A banded? ﬁ{ f08lsc f08msc ‘
oo
Are singular values only required? ﬁ( f08ksc f08msc ‘
oo
| f08ksc f08ktc f08msc ]
no
Is 4 bidiagonal? ﬁ{ f08mec |
|no
Is A banded? f08lec f08mec |
yes
[ro
Are singular values only required? ves fO8kec f08mec ‘
[no
] f08kec fO8kfc f08mec |
5 Index
Backtransformation of eigenvectors from those of balanced forms:
COMPIEX MALIIX .euvevetieiieteeiieteteteteseetetetetee et teseseesesese et eseneesesesesesesesensesesensesesans nag_zgebak (£08nwc)
COMPIEX MALIIX +.vvvieveviiriereriteeeeteeeetetete et eteeteeeeressetessereesessesesseseesessssessasesseseeseseas nag_zggbak (£08wwc)
TEAL MALITX  ootieiieieciieie ettt ettt sttt ettt ete et e s teebeenteestesbeenbesneesseensesseans nag_dgebak (£08njc)
TEAL MALITX  oetiiiieiieitiete ettt ettt et st e st ebe et e esee s bt enbesaeesaeeneesbeans nag_dggbak (£f08wjc)
Balancing:
complex general MAIIX .....coceoiririririnieeeceeet et nag_zgebal (£08nvc)
compleX general MATX ...occeevveeeieriereeiereeieeteete st aeseeste et e steeaeeseenbeeneenaeenes nag_zggbal (£08wvc)
real eneral MAMIX .....ccoccievieiieriieieeiese ettt st eee st et et eee st enseeneesaeens nag_dgebal (£08nhc)
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real eneral MAIX .....ccoccverieeiieierieeieseeteerteeeeste et esteetesteeteseeessesseenseennesseens nag_dggbal (£08whc)
Figenvalue problems for condensed forms of matrices:
complex Hermitian matrix:
eigenvalues and eigenvectors:
band matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
nag_zhbevd (£08hqgc)
general matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zheevd (£08fqc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
nag_zhpevd (£08gqc)
eigenvalues only:
band matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using packed
SEOTAZE  +eeuteeueetieieette it et ettt et ettt e e et e st e e s bt et e et e s be et e bt entesbeeneeens nag_zhbevd (£08hqc)
general matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
nag_zheevd (£08fqc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using packed

SEOTAZE  .eeuteeuietieie et te ettt et et sttt et e bt e e s bt et et e s b et e beentesbe et ens nag_zhpevd (£08gqc)

complex upper Hessenberg matrix, reduced from complex general matrix:
eigenvalues and Schur factorization ............ccccecveeveerierieniecieneeie e nag_zhseqr (£08psc)
selected right and/or left eigenvectors by inverse iteration ........................... nag_zhsein (£08pxc)

real bidiagonal matrix:
singular value decomposition:
after reduction from complex general matrix .......c.ccocceververienenienennen. nag_zbdsqr (£08msc)
after reduction from real general MAriX .......cccooveeviecierereenieeieneeneennn nag_dbdsqr (£08mec)
real symmetric matrix:
eigenvalues and eigenvectors:
band matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsbevd (£08hcc)
general matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsyevd (£08fcc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
nag_dspevd (£08gcc)
eigenvalues only:
band matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
nag_dsbevd (£08hcc)
general matrix:
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
nag_dsyevd (£08fcc)
all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm, using packed
SEOTAZE  cvoveverereerieeteereseeretete et eteteseese s ete et ese et essese et essesesseteasetesseseesensens nag_dspevd (£08gcc)
real symmetric tridiagonal matrix:
eigenvalues and eigenvectors:
after reduction from complex Hermitian matrix:

all eigenvalues and €IZENVECIOTS ......ccceveirieriiriinieeienieerieeie e nag_zsteqr (£08jsc)
all eigenvalues and eigenvectors, positive-definite matrix ............... nag_zpteqr (£08juc)
selected eigenvectors by inverse iteration ............c.cceceeveriereereeenenne nag_zstein (£08jxc)
all eigenvalues and €IZENVECIOTS .......cceevivieriieieriieieeiere e nag_dsteqr (£08jec)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm ... nag_dstevd (£08jcc)
all eigenvalues and eigenvectors, positive-definite matrix .................... nag_dpteqr (£08jgc)
selected eigenvectors by InVerse iteration ........c..c..cecceveevererenerenenennenne nag_dstein (£08jkc)
eigenvalues only:
all eigenvalues by root-free QR algorithm ..........ccccoeevevieiinienenieieen. nag_dsterf (£08jfc)

all eigenvalues by the Pal-Walker—Kahan variant of the QL or QR algorithm
nag_dstevd (£08jcc)
selected eigenvalues by DIiSECION ........cccoceevieerinirinenerese e nag_dstebz (£08jjc)
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real upper Hessenberg matrix, reduced from real general matrix:

eigenvalues and Schur factorization ............ccccecceeeienierieniecieniee e nag_dhseqr (£08pec)
selected right and/or left eigenvectors by inverse iteration ..............ccceeuee... nag_dhsein (£08pkc)
Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg form ..........cccooevieiinininiincnenenne nag_zhgeqz (£08xsc)
real generalized upper Hessenberg form ...........ccocevievienieciinieiicieseeee e, nag_dhgeqz (£08xec)
Left and right eigenvectors of a pair of matrices:
complex upper triangular MAIICES ......eevverveereerierieriieieeterie et eee e see e saeene nag_ztgevc (£08yxc)
real quasi-triangular MAtriCES  .......ccceeveriirieiieriieieeie ettt nag_dtgevc (£08ykc)

LQ factorization and related operations:
complex matrices:

APPLY UNITATY MALTIX  .ooviviivieieeiiieeietce ettt ettt et et esete e sn e en v nag_zunmlq (£f08axc)

FACLOTIZATION ..ottt ettt ettt sbeeae bt enbe et e sbeenbesneenes nag_zgelqf (£08avc)

form all or part of unitary MatriX .......ccccoeceeviriienerieeeee e nag_zunglq (£08awc)
real matrices:

apply orthogonal MAtriX ........ccceoeriiiieiiiniee e nag_dormlq (£08akc)

FACTOTIZALION ....o.vievviieeictcectceeee ettt ettt ettt se v e re s nag_dgelqf (£08ahc)

form all or part of orthogonal matrix
Operations on Schur factorization of a general matrix:
complex matrix:

nag_dorglq (£f08ajc)

compute left and/or right €igenvectors ..........cccccevveevieriiierieeiieieeeee e nag_ztrevc (£08qxc)
estimate sensitivities of eigenvalues and/or eigenvectors .............ccccceervenneene. nag_ztrsna (£08qyc)
re-order Schur factorization .........c..ocooceieiiininineeeee e nag_ztrexc (£08qtc)

re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities
nag_ztrsen (£08quc)
real matrix:

compute left and/or right €iENVECOrS .......cceecvevieriieiienierieeieeieeee e nag_dtrevc (£08gkc)
estimate sensitivities of eigenvalues and/or eigenvectors .............ccceceerveneene. nag_dtrsna (£08qlc)
re-order Schur factoriZation ...........ccocceeeerieriiiieie et nag_dtrexc (£08qfc)

re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities
nag_dtrsen (£08qgc)
OR factorization and related operations:
complex matrices:

APPLY UNIATY MATIX  c.veeeviiieiieieiieie ettt ete et e b eneeseeesaesaeenes nag_zunmqr (£08auc)
FACLOTIZATION ..ottt ettt ettt ettt st e b e e sae e nag_zgeqrf (£08asc)
factorization, with column PiVOLING .......cecerieiirienieienceeee e nag_zgeqpf (£08bsc)
form all or part of unitary mMatriX .......cccceeverienininienieeeeee e nag_zungqr (£08atc)
real matrices:
apply orthogonal MALIIX ......ccoccveriieriiiieiieieeteeee et nag_dormqr (£08agc)
FACLOTIZATION ...vevvieeiieeieiieie ettt ettt et et e st e e enaesbeenbeeneenee nag_dgeqrf (£08aec)
factorization, with column PiVOLING ......ccecevieiirieniriireeeeee e nag_dgeqpf (£08bec)
form all or part of orthogonal MatriX ........ccccevevieiinieniinineceeeee nag_dorgqr (f08afc)
Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real MAatriCeS .......ccccveeierierieeiieniierieie et nag_dgghrd (£08wec)
unitary reduction, COMPIEX MALTICES ....vevvverveeiereierieeieniieienieeetesreeneeeeeseeenesaeens nag_zgghrd (£08wsc)

Reduction of eigenvalue problems to condensed forms, and related operations:
complex general matrix to upper Hessenberg form:

apply orthogonal MAIIX .......ccccceeeiieiiiierieeie et nag_zunmhr (£08nuc)
form orthogonal MAITX  ..c.eecveveieriieieiieieeieetete ettt nag_zunghr (£08ntc)
reduce to Hessenberg form ........ccocovieiiirieiiiiieieciee e nag_zgehrd (£08nsc)
complex Hermitian band matrix to real symmetric tridiagonal form ............ nag_zhbtrd (£08hsc)
complex Hermitian matrix to real symmetric tridiagonal form:
APPLy UNIATY MALTIX  .ovieeiiieiie ettt e et e et e et e ereeseeenseenneeees nag_zunmtr (£08fuc)
apply unitary matriX, packed StOrage .........cccoccvveriieiieniienieieieeeeseeie e nag_zupmtr (£08guc)
form UNItAry MAtIIX  .ocvoiiviieeiiiciceectceetceee ettt nag_zungtr (£08ftc)
form unitary matrix, packed StOrage ........cccceveevieeienieiieeieieeeeie e nag_zupgtr (£08gtc)
reduce to tridiagonal fOrm ...........ccocoiiiiiiiiniiie nag_zhetrd (£08fsc)
reduce to tridiagonal form, packed StOrage ............cccoceeveviievieciecienieieenenn, nag_zhptrd (£08gsc)
complex rectangular band matrix to real upper bidiagonal form .................. nag_zgbbrd (£08lsc)

[NP3660/8] 108.41



Introduction — f08 NAG C Library Manual

complex rectangular matrix to real bidiagonal form:

APPLY UNIATY MALTIX  c.veeeiiiieiieieiieie ettt et eae et et enee s e enaeseeenes nag_zunmbr (£08kuc)
fOrm UNItAry MALTIX  c.eeeveieieiieieiieieeee ettt s nag_zungbr (£08ktc)
reduce to bidiagonal form ..........ccocoiiiiiiiiiiiii nag_zgebrd (£08ksc)
real general matrix to upper Hessenberg form:
apply orthogonal MALIIX ......ceccveriieiiiiieiiieieceerie et nag_dormhr (£08ngc)
form orthogonal MAatrix .....cc.ccceeveiiiiiiiiiieeee e nag_dorghr (£08nfc)
reduce to Hessenberg form ........ccocooievienieiiiiieie e nag_dgehrd (£08nec)
real rectangular band matrix to upper bidiagonal form ..........ccccccoverieeinnnn. nag_dgbbrd (£08lec)
real rectangular matrix to bidiagonal form:
apply orthogonal MALIIX ......ccecceeriieciiiieiieiectee et e nag_dormbr (£08kgc)
form orthogonal MAatrix .....cc.ocevirviiiiiiiiiieee e nag_dorgbr (£f08kfc)
reduce to bidiagonal form ..........ccccoiiiriiriiiiini e nag_dgebrd (£08kec)
real symmetric band matrix to symmetric tridiagonal form ............ccccceceeee. nag_dsbtrd (£08hec)
real symmetric matrix to symmetric tridiagonal form:
apply orthogonal MAtriX ........ccceoeeiiiiiiiiiiee e nag_dormtr (£08fgc)
apply orthogonal matrix, packed StOrage ..........ccccoceviervievenienieeieneeie e nag_dopmtr (£08ggc)
form orthogonal MALITX ....ccceevvieeieiieiieieieee et nag_dorgtr (£08ffc)
form orthogonal matrix, packed StOTAZE .......cceeveeveeriirienieieieeeee e nag_dopgtr (£08gfc)
reduce to tridiagonal fOrm ...........ccooceiiiiiiiiiiii e nag_dsytrd (£08fec)
reduce to tridiagonal form, packed StOrage ...........c.ccceveniiiiiiniinienienncnene nag_dsptrd (£08gec)
Reduction of generalized eigenproblems to standard eigenproblems:
complex Hermitian-definite banded generalized eigenproblem 4Ax = ABx ...... nag_zhbgst (£08usc)

complex Hermitian-definite generalized eigenproblem Ax = ABx, ABx = A\x or BAx = Ax

nag_zhegst (£08ssc)
complex Hermitian-definite generalized eigenproblem Ax = ABx, ABx = Ax or BAx = A\x, packed
SEOTAZE  wovevieiteteeieieteteteteees et ete sttt ete s et esese st s esese et et ases s e s et anesseseseseesesane s esesansesesans nag_zhpgst (£08tsc)
real symmetric-definite banded generalized eigenproblem Ax = ABx ............ nag_dsbgst (£08uec)
real symmetric-definite generalized eigenproblem Ax = ABx, ABx = \x or BAx = Ax

nag_dsygst (£08sec)
real symmetric-definite generalized eigenproblem Ax = ABx, ABx = MAx or BAx = )\x, packed storage

nag_dspgst (£f08tec)

Solve reduced form of Sylvester matrix equation:

COMPIEX MATICES .eeuvreurereieiieiiertieieetterieetesteeteeteetesteeteeseesteeneeeseeseensesseeseenseenes nag_ztrsyl (£08qvc)

TEAL MALTICES  .eeuvieuietieieeiiesteete ettt sttt ettt et e sate s bt eatesbe e testeensesaeesseeneesbeans nag_dtrsyl (£08ghc)
Split Cholesky factorization:

complex Hermitian positive-definite band matriX ........ccceveevenieiinininncnenne nag_zpbstf (£08utc)

real symmetric positive-definite band matriX ..........cccoceeeeriieriiecieniieci e nag_dpbstf (£08ufc)

6 Functions Withdrawn or Scheduled for Withdrawal

None.
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