
NAG C Library Chapter Introduction

f08 – Least-squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background to the Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Linear Least-squares Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Orthogonal Factorizations and Least-squares Problems . . . . . . . . . . . . . . . . . 4

2.2.1 QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 LQ factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 QR factorization with column pivoting . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.4 Complete orthogonal factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5 Other factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 The Singular Value Decomposition and Least-squares Problems . . . . . . . . . . 7

2.5 Generalized Linear Least-squares Problems . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6.1 Generalized QR Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6.2 Generalized RQ Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.3 Generalized Singular Value Decomposition (GSVD) . . . . . . . . . . . . . . . . . 10

2.7 Symmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Generalized Symmetric-definite Eigenvalue Problems . . . . . . . . . . . . . . . . . 12

2.9 Packed Storage for Symmetric Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Band Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.11 Nonsymmetric Eigenvalue Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.12 Generalized Nonsymmetric Eigenvalue Problem . . . . . . . . . . . . . . . . . . . . . 14

2.13 The Sylvester Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.14 Error and Perturbation Bounds and Condition Numbers . . . . . . . . . . . . . . . . 15

2.14.1 Least-squares problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.14.2 The singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.14.3 The symmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.14.4 The generalized symmetric-definite eigenproblem . . . . . . . . . . . . . . . . . . . 19
2.14.5 The non-symmetric eigenproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.14.6 Balancing and condition for the non-symmetric eigenproblem . . . . . . . . . . . 20
2.14.7 The generalized non-symmetric eigenvalue problem . . . . . . . . . . . . . . . . . 20
2.14.8 Balancing the generalized eigenvalue problem . . . . . . . . . . . . . . . . . . . . . 21
2.14.9 Other problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.15 Block Partitioned Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Recommendations on Choice and Use of Available Functions . . . . . . . . 22

3.1 Available Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Computational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1.1 Orthogonal factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.1



3.1.1.2 Singular value problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1.3 Symmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1.4 Generalized symmetric-definite eigenvalue problems . . . . . . . . . . . . 25
3.1.1.5 Nonsymmetric eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . 26
3.1.1.6 Generalized non-symmetric eigenvalue problems . . . . . . . . . . . . . . . 27
3.1.1.7 Sylvester’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 NAG Names and LAPACK Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Matrix Storage Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Conventional storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Packed storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Band storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 Tridiagonal and bidiagonal matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.5 Real diagonal elements of complex matrices . . . . . . . . . . . . . . . . . . . . . . 32
3.3.6 Representation of orthogonal or unitary matrices . . . . . . . . . . . . . . . . . . . 32

3.4 Argument Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Option arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Problem dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 General Purpose Functions (eigenvalues and eigenvectors) . . . . . . . . . . . . . . 34

4.2 General Purpose Functions (singular value decomposition) . . . . . . . . . . . . . . 39

5 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Functions Withdrawn or Scheduled for Withdrawal . . . . . . . . . . . . . . . 42

7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Introduction – f08 NAG C Library Manual

f08.2 [NP3660/8]



1 Scope of the Chapter

This chapter provides functions for the solution of linear least-squares problems, eigenvalue problems and
singular value problems, as well as associated computations. It provides functions for:

– solution of linear least-squares problems

– solution of symmetric eigenvalue problems

– solution of non-symmetric eigenvalue problems

– solution of singular value problems

– solution of generalized symmetric-definite eigenvalue problems

– solution of generalized non-symmetric eigenvalue problems

– solution of generalized singular value problems

– solution of generalized linear least-squares problems

– matrix factorizations associated with the above problems

– estimating condition numbers of eigenvalue and eigenvector problems

– estimating the numerical rank of a matrix

– solution of the Sylvester matrix equation

Functions are provided for both real and complex data.

For a general introduction to the solution of linear least-squares problems, you should turn first to Chapter
f04. The decision trees, at the end of Chapter f04, direct you to the most appropriate functions in Chapters
f04 or f08. Chapters f04 and f08 contain Black Box (or driver) functions which enable standard linear
least-squares problems to be solved by a call to a single function.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter f02.
The decision trees, at the end of Chapter f02, direct you to the most appropriate functions in Chapters f02
or f08. Chapters f02 and f08 contain Black Box (or driver) functions which enable standard types of
problem to be solved by a call to a single function. Often functions in Chapter f02 call Chapter f08
functions to perform the necessary computational tasks.

The functions in this chapter (f08) handle only dense, band, tridiagonal and Hessenberg matrices (not
matrices with more specialized structures, or general sparse matrices). The tables in Section 3 and the
decision trees in Section 4 direct you to the most appropriate functions in Chapter f08.

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al. (1999)).
They have been designed to be efficient on a wide range of high-performance computers, without
compromising efficiency on conventional serial machines.

It is not expected that you will need to read all of the following sections, but rather you will pick out those
sections relevant to your particular problem.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least-squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion, for
example Golub and Van Loan (1996).

2.1 Linear Least-squares Problems

The linear least-squares problem is

minimize
x

b� Axk k2, ð1Þ

where A is an m by n matrix, b is a given m element vector and x is an n element solution vector.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.3



In the most usual case m � n and rank Að Þ ¼ n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank Að Þ ¼ m, there are an infinite number of solutions x which exactly satisfy
b� Ax ¼ 0. In this case it is often useful to find the unique solution x which minimizes xk k2, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank Að Þ < min m; nð Þ – in other words, A may be rank-deficient –
we seek the minimum norm least-squares solution x which minimizes both xk k2 and b� Axk k2.
This chapter (f08) contains driver functions to solve these problems with a single call, as well as
computational functions that can be combined with functions in Chapter f07 to solve these linear least-
squares problems. The next two sections discuss the factorizations that can be used in the solution of
linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

A number of functions are provided for factorizing a general rectangular m by n matrix A, as the product
of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ ¼ I ; a complex matrix Q is unitary if QHQ ¼ I . Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

xk k2 ¼ Qxk k2,

if Q is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least-squares problems. They may also be used
to perform preliminary steps in the solution of eigenvalue or singular value problems, and are useful tools
in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A ¼ Q
R
0

� �
, if m � n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A is of
full rank n, then R is non-singular. It is sometimes convenient to write the factorization as

A ¼ Q1Q2ð Þ R
0

� �
which reduces to

A ¼ Q1R,

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1R2ð Þ, if m < n,

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least-squares problem (1) when m � n and A is of full
rank, since

b� Axk k2 ¼ QTb� QTAx
�� ��

2
¼ c1 � Rx

c2

� �����
����
2

,

where

Introduction – f08 NAG C Library Manual

f08.4 [NP3660/8]



c � c1
c2

� �
¼

QT
1 b

QT
2 b

0
@

1
A ¼ QTb;

and c1 is an n element vector. Then x is the solution of the upper triangular system

Rx ¼ c1.

The residual vector r is given by

r ¼ b� Ax ¼ Q
0
c2

� �
.

The residual sum of squares rk k2
2 may be computed without forming r explicitly, since

rk k2 ¼ b� Axk k2 ¼ c2k k2.

2.2.2 LQ factorization

The LQ factorization is given by

A ¼ L 0ð ÞQ ¼ L 0ð Þ Q1

Q2

� �
¼ LQ1, if m � n,

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m rows of
Q, and Q2 the remaining n� m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex), since

A ¼ L 0ð ÞQ , AT ¼ QT LT

0

� �
.

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax ¼ b where A is m by n with m < n and has rank m. The solution is given by

x ¼ QT L�1b
0

� �
.

2.2.3 QR factorization with column pivoting

To solve a linear least-squares problem (1) when A is not of full rank, or the rank of A is in doubt, we can
perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A ¼ Q
R
0

� �
PT, m � n,

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

r11j j � r22j j � � � � � rnnj j
and moreover, for each k,

rkkj j � Rk:j;j

�� ��
2
, j ¼ k þ 1; . . . ; n.

If we put

R ¼ R11 R12

0 R22

� �
where R11 is the leading k by k upper triangular sub-matrix of R then, in exact arithmetic, if rank Að Þ ¼ k,
the whole of the sub-matrix R22 in rows and columns k þ 1 to n would be zero. In numerical computation,
the aim must be to determine an index k, such that the leading sub-matrix R11 is well-conditioned, and R22

is negligible, so that

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.5



R ¼ R11 R12

0 R22

� �
’ R11 R12

0 0

� �
.

Then k is the effective rank of A. See Golub and Van Loan (1996) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least-squares problem (1) can be obtained from this factorization
as

x ¼ P R�1
11 ĉ1
0

� �
,

where ĉ1 consists of just the first k elements of c ¼ QTb.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to a
rank-deficient linear least-squares problem, unless R12 ¼ 0. However, by applying for further orthogonal
(or unitary) transformations from the right to the upper trapezoidal matrix R11 R12ð Þ, R12 can be
eliminated:

R11 R12ð ÞZ ¼ T11 0ð Þ.
This gives the complete orthogonal factorization

AP ¼ Q
T11 0
0 0

� �
ZT

from which the minimum norm solution can be obtained as

x ¼ PZ T�1
11 ĉ1
0

� �
.

2.2.5 Other factorizations

The QL and RQ factorizations are given by

A ¼ Q
0
L

� �
, if m � n,

and

A ¼ 0 Rð ÞQ, if m � n.

The factorizations are less commonly used than either the QR or LQ factorizations described above, but
have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�VT, A ¼ U�VHin the complex case
� �

where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal elements,
�i, such that

�1 � �2 � � � � � �min m;nð Þ � 0.

The �i are the singular values of A and the first min m; nð Þ columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi or AHui ¼ �ivi
� �

where ui and vi are the ith columns of U and V respectively.

The computation proceeds in the following stages.

Introduction – f08 NAG C Library Manual

f08.6 [NP3660/8]



1. The matrix A is reduced to bidiagonal form A ¼ U1BV
T
1 if A is real (A ¼ U 1BV

H
1 if A is complex),

where U 1 and V 1 are orthogonal (unitary if A is complex), and B is real and upper bidiagonal when
m � n and lower bidiagonal when m < n, so that B is non-zero only on the main diagonal and either
on the first superdiagonal (if m � n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�VT
2 , where U 2 and V 2 are orthogonal

and � is diagonal as described above. The singular vectors of A are then U ¼ U1U2 and V ¼ V 1V 2.

If m � n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD of

the n by n matrix R, since if A ¼ QR and R ¼ U�VT, then the SVD of A is given by A ¼ QUð Þ�VT.

Similarly, if m � n, it may be more efficient to first perform an LQ factorization of A.

2.4 The Singular Value Decomposition and Least-squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least-squares
problem (1). The effective rank, k, of A can be determined as the number of singular values which exceed

a suitable threshold. Let �̂ be the leading k by k sub-matrix of �, and V̂ be the matrix consisting of the
first k columns of V . Then the solution is given by

x ¼ V̂ �̂�1ĉ1,

where ĉ1 consists of the first k elements of c ¼ UTb ¼ UT
2U

T
1 b.

2.5 Generalized Linear Least-squares Problems

The simple type of linear least-squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least-squares problems with equality constraints:

find x to minimize S ¼ c� Axk k2
2 subject to Bx ¼ d,

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded as a
set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
,

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least-squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix
A
B

� �
has full column rank n. (For linear least-

squares problems with inequality constraints, refer to Chapter e04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ Axþ By,

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I , the problem reduces to an
ordinary linear least-squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least-squares problem:

find x to minimize B�1 d � Axð Þ
�� ��

2
.

The problem has a unique solution on the assumptions that A has full column rank n, and the matrix
A;Bð Þ has full row rank m. Unless B is diagonal, for numerical stability it is generally preferable to
solve a weighted linear least-squares problem as a general Gauss–Markov linear model problem.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.7



2.6 Generalized Orthogonal Factorization and Generalized Linear Least-squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an n by m matrix A and an n by p matrix B is given by the
pair of factorizations

A ¼ QR and B ¼ QTZ,

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B are
complex). R has the form

R ¼
! m

m R11

n� m 0
, if n � m,

or

R ¼
�� n m� n

n R11 R12
, if n < m,

where R11 is upper triangular. T has the form

T ¼
�� p� n n

n 0 T12
, if n � p,

or

T ¼
! p

n� p T11

p T21

, if n > p,

where T12 or T21 is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR

factorization of the matrix B�1A:

B�1 ¼ ZT T�1R
� �

without explicitly computing the matrix inverse B�1 or the product B�1A.

The GQR factorization can be used to solve the general (Gauss–Markov) linear model problem (GLM)
(see Section 2.5). Using the GQR factorization of A and B, we rewrite the equation d ¼ Axþ By as

QTd ¼ QTAxþ QTBy
¼ Rxþ TZy.

We partition this as

d1
d2

� �
¼

! m

m R11

n� m 0
xþ

! p� nþ m n� m

m T11 T12

n� m 0 T22

y1
y2

� �

where

d1
d2

� �
� QTd, and

y1
y2

� �
� Zy.

The GLM problem is solved by setting

y1 ¼ 0 and y2 ¼ T�1
22 d2

from which we obtain the desired solutions

x ¼ R�1
11 d1 � T12y2ð Þ and y ¼ ZT 0

y2

� �
.

Introduction – f08 NAG C Library Manual

f08.8 [NP3660/8]



2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix A and a p by n matrix B is given by the
pair of factorizations

A ¼ RQ, B ¼ ZTQ

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B are
complex. (R has the form

R ¼
�� n� m m

m 0 R12
, if m � n,

or

R ¼
! n

m� n R11

n R21

, if m > n,

where R12 or R21 is upper triangular. T has the form

T ¼
! n

n T11

p� n 0
, if p � n,

or

T ¼
�� p n� p

p T11 T12
, if p < n,

where T11 is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ

factorization of the matrix AB�1:

AB�1 ¼ RT�1
� �

ZT

without explicitly computing the matrix B�1 or the product AB�1.

The GRQ factorization can be used to solve the linear equality-constrained least-squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and A have swapped roles),
written as

B ¼ TQ and A ¼ ZRQ.

We write the linear equality constraints Bx ¼ d as

TQx ¼ d,

which we partition as:

�� n� p p

p 0 T12

x1
x2

� �
¼ d where

x1
x2

� �
� Qx.

Therefore x2 is the solution of the upper triangular system

T12x2 ¼ d.

Furthermore,

Ax� ck k2 ¼ ZTAx� ZTc
�� ��

2

¼ RQx� ZTc
�� ��

2

.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.9



We partition this expression as:

! n� p p

n� p R11 R12

P þ m� n 0 R22

x1
x2

� �
� c1

c2

� �
,

where
c1
c2

� �
� ZTc.

To solve the LSE problem, we set

R11x1 þ R12x2 � c1 ¼ 0

which gives x1 as the solution of the upper triangular system

R11x1 ¼ c1 � R12x2.

Finally, the desired solution is given by

x ¼ QT x1
x2

� �
.

2.6.3 Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an m by n matrix A and a p by n matrix
B is given by the pair of factorizations

A ¼ U�1 0;R½ �QT and B ¼ V�2 0;R½ �QT.

The matrices in these factorizations have the following properties:

– U is m by m, V is p by p, Q is n by n, and all three matrices are orthogonal. If A and B are complex,

these matrices are unitary instead of orthogonal, and QT should be replaced by QH in the pair of
factorizations.

– R is r by r, upper triangular and nonsingular. 0;R½ � is r by n (in other words, the 0 is an r by n� r

zero matrix). The integer r is the rank of
A
B

� �
, and satisfies r � n.

– �1 is m by r, �2 is p by r, both are real, non-negative and diagonal, and �T
1�1 þ�T

2�2 ¼ I . Write

�T
1�1 ¼ diag �2

1; . . . ; �
2
r

� �
and �T

2�2 ¼ diag �2
1; . . . ; �

2
r

� �
, where �i and �i lie in the interval from 0 to

1. The ratios �1=�1; . . . ; �r=�r are called the generalized singular values of the pair A, B. If �i ¼ 0,
then the generalized singular value �i=�i is infinite.

�1 and �2 have the following detailed structures, depending on whether m� r � 0 or m� r < 0. In the
first case, m� r � 0, then

�1 ¼

1
A

0
@

k l

k I 0
l 0 C

m� k � l 0 0

and �2 ¼
! k l

l 0 S
p� l 0 0

.

Here l is the rank of B, k ¼ r � l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I , and S is
nonsingular. We may also identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii for i ¼ 1; . . . ; l, �1 ¼ � � � ¼ �k ¼ 0, and
�kþi ¼ sii for i ¼ 1; . . . ; l. Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are infinite, and
the remaining l generalized singular values are finite.

In the second case, when m� r < 0,

�1 ¼
! k m� k k þ l � m

k I 0 0
m� k 0 C 0

and

Introduction – f08 NAG C Library Manual

f08.10 [NP3660/8]



�2 ¼

1
A

0
@

k m� k k þ l � m

m� k 0 S 0
k þ l � m 0 0 I

p� l 0 0 0

.

Again, l is the rank of B, k ¼ r � l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I , and S is
nonsingular, and we may identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii for i ¼ 1; . . . ;m� k,
�mþ1 ¼ � � � ¼ �r ¼ 0, �1 ¼ � � � ¼ �k ¼ 0, �kþi ¼ sii for i ¼ 1; . . . ;m� k and �mþ1 ¼ � � � ¼ �r ¼ 1.
Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are infinite, and the remaining l generalized
singular values are finite.

Here are some important special case of the generalized singular value decomposition. First, if B is square
and nonsingular, then r ¼ n and the generalized singular value decomposition of A and B is equivalent to

the singular value decomposition of AB�1, where the singular values of AB�1 are equal to the generalized
singular values of the pair A, B:

AB�1 ¼ U�1RQ
T

� �
V�2RQ

T
� ��1 ¼ U �1�

�1
2

� �
VT.

Second, if the columns of ATBT
� �T

are orthonormal, then r ¼ n, R ¼ I and the generalized singular value

decomposition of A and B is equivalent to the CS (Cosine–Sine) decomposition of ATBT
� �T

:

A
B

� �
¼ U 0

0 V

� �
�1

�2

� �
QT.

Third, the generalized eigenvalues and eigenvectors of ATA� �BTB can be expressed in terms of the
generalized singular value decomposition: Let

X ¼ Q
I 0
0 R�1

� �
.

Then

XTATAX ¼ 0 0
0 �T

1�1

� �
and XTBTBX ¼ 0 0

0 �T
2�2

� �
.

Therefore, the columns of X are the eigenvectors of ATA� �BTB, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those

corresponding to the leading n� r columns of X , which span the common null space of ATA and BTB.
The ‘trivial eigenvalues’ are not well defined.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z, A ¼ AT, where A is real.

For the Hermitian eigenvalue problem we have

Az ¼ �z, A ¼ AH, where A is complex.

For both problems the eigenvalues � are real.

When all eigenvalues and eigenvectors have been computed, we write

A ¼ Z�ZT or A ¼ Z�ZH if complex
� �

,

where � is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem functions is to compute values of � and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.11



1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is real

symmetric this decomposition is A ¼ QTQT with Q orthogonal and T symmetric tridiagonal. If A is

complex Hermitian, the decomposition is A ¼ QTQH with Q unitary and T , as before, real symmetric
tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all

eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T ¼ S�ST, where S
is orthogonal and � is diagonal. The diagonal entries of � are the eigenvalues of T , which are also
the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are the

columns of Z ¼ QS, so that A ¼ Z�ZT (Z�ZH when A is complex Hermitian).

This chapter supports three primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide-and-conquer algorithm;

(ii) the QR algorithm;

(iii) bisection followed by inverse iteration.

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm and is
recommended for computing all eigenvalues and eigenvectors.

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz, ABz ¼ �z,
and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive-definite. Each of
these problems can be reduced to a standard symmetric eigenvalue problem, using a Cholesky factorization

of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT, we have

Az ¼ �Bz ) L�1AL�T
� �

LTz
� �

¼ � LTz
� �

.

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix C ¼ L�1AL�T

and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

Table 1 summarizes how each of the three types of problem may be reduced to standard form Cy ¼ �y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must be
replaced by conjugate-transposes.

Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az ¼ �Bz B ¼ LLT,

B ¼ UTU

C ¼ L�1AL�T,

C ¼ U�TAU�1
z ¼ L�Ty,

z ¼ U�1y

2. ABz ¼ �z B ¼ LLT,

B ¼ UTU

C ¼ LTAL,

C ¼ UAUT
z ¼ L�Ty,

z ¼ U�1y

3. BAz ¼ �z B ¼ LLT,

B ¼ UTU

C ¼ LTAL,

C ¼ UAUT

z ¼ Ly,

z ¼ UTy

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard problem
Cy ¼ �y, this may then be solved using the functions described in the previous section. No special
functions are needed to recover the eigenvectors z of the generalized problem from the eigenvectors y of

Introduction – f08 NAG C Library Manual

f08.12 [NP3660/8]



the standard problem, because these computations are simple applications of Level 2 or Level 3 BLAS (see
Chapter f16).

2.9 Packed Storage for Symmetric Matrices

Functions which handle symmetric matrices are usually designed so that they use either the upper or lower
triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower triangle is
stored conventionally in the upper or lower triangle of a two-dimensional array, the remaining elements of
the array can be used to store other useful data. However, that is not always convenient, and if it is
important to economize on storage, the upper or lower triangle can be stored in a one-dimensional array of
length n nþ 1ð Þ=2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.

Functions designed for packed storage are usually less efficient, especially on high-performance computers,
so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.

If the problem is the generalized symmetric definite eigenvalue problem Az ¼ �Bz and the matrices A and
B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce the
problem to a banded standard problem by modifying the definition of C thus:

C ¼ XTAX , where X ¼ U�1Q or L�TQ,

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required to

form C. Instead of the standard Cholesky factorization of B as UTU or LLT, we use a split Cholesky

factorization B ¼ STS, where

S ¼ U11

M21 L22

� �
with U 11 upper triangular and L22 lower triangular of order approximately n=2; S has the same bandwidth
as B.

2.11 Nonsymmetric Eigenvalue Problems

The non-symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v.

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0 satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT,

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2 diagonal
blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the complex
case, the Schur factorization is

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.13



A ¼ ZTZH,

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form an
orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal of T .
Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors rather
than eigenvectors. It is possible to order the Schur factorization so that any desired set of k eigenvalues
occupy the k leading positions on the diagonal of T .

The two basic tasks of the non-symmetric eigenvalue functions are to compute, for a given matrix A, all n
values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the Schur
factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first subdiagonal.

The reduction may be written A ¼ QHQT with Q orthogonal if A is real, or A ¼ QHQH with Q
unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization H ¼ STST

(for H real) or H ¼ STSH (for H complex). The matrix S (the Schur vectors of H) may optionally be
computed as well. Alternatively S may be postmultiplied into the matrix Q determined in stage 1, to
give the matrix Z ¼ QS, the Schur vectors of A. The eigenvalues are obtained from the diagonal
elements or diagonal blocks of T .

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration can
be performed on H to compute the eigenvectors of H , and then the eigenvectors can be multiplied by
the matrix Q in order to transform them to eigenvectors of A. Alternatively the eigenvectors of T can
be computed, and optionally transformed to those of H or A if the matrix S or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix. This
is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized non-symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv.

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.
If B is singular then the problem has one or more infinite eigenvalues � ¼ 1, corresponding to Bv ¼ 0.
Note that if A is non-singular, then the equivalent problem �Av ¼ Bv is perfectly well defined and an
infinite eigenvalue corresponds to � ¼ 0. To deal with both finite (including zero) and infinite eigenvalues,
the functions in this chapter do not compute � explicitly, but rather return a pair of numbers �; �ð Þ such
that if � 6¼ 0

� ¼ �=�

and if � 6¼ 0 and � ¼ 0 then � ¼ 1. � is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small � rather than an exact zero.

For a given pair A;Bð Þ the set of all the matrices of the form A� �Bð Þ is called a matrix pencil and � and
v are said to be an eigenvalue and eigenvector of the pencil A� �Bð Þ. If A and B are both singular and
share a common null-space then

det A� �Bð Þ � 0

so that the pencil A� �Bð Þ is singular for all �. In other words any � can be regarded as an eigenvalue.

Introduction – f08 NAG C Library Manual

f08.14 [NP3660/8]



In exact arithmetic a singular pencil will have � ¼ � ¼ 0 for some �; �ð Þ. Computationally if some pair
�; �ð Þ is small then the pencil is singular, or nearly singular, and no reliance can be placed on any of the
computed eigenvalues. Singular pencils can also manifest themselves in other ways; see, in particular,
Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
A;Bð Þ defined in the real case as

A ¼ QSZT, B ¼ QTZT,

where Q and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is upper
quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to complex
conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A ¼ QSZH, B ¼ QTZH,

where Q and Z are unitary and S and T are upper triangular, with T having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors and
span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

The two basic tasks of the generalized non-symmetric eigenvalue functions are to compute, for a given pair
A;Bð Þ, all n values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and
the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair A;Bð Þ is reduced to generalized upper Hessenberg form H ;Rð Þ, where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be written

as A ¼ Q1HZT
1 ;B ¼ Q1RZ

T
1 in the real case with Q1 and Z1 orthogonal, and A ¼ Q1HZH

1 ;B ¼ Q1RZ
H
1

in the complex case with Q1 and Z1 unitary.

2. The generalized upper Hessenberg form H ;Rð Þ is reduced to the generalized Schur form S;Tð Þ using
the generalized Schur factorization H ¼ Q2SZ

T
2 , R ¼ Q2TZ

T
2 in the real case with Q2 and Z2

orthogonal, and H ¼ Q2SZ
H
2 ;R ¼ Q2TZ

H
2 in the complex case. The generalized Schur vectors of

A;Bð Þ are given by Q ¼ Q1Q2, Z ¼ Z1Z2. The eigenvalues are obtained from the diagonal elements
(or blocks) of the pair S; Tð Þ.

3. Given the eigenvalues, the eigenvectors of the pair S; Tð Þ can be computed, and optionally
transformed to those of H ;Rð Þ or A;Bð Þ.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix pair.
This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX þ XB ¼ C,

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the solution
matrix X , m by n matrices. The solution of a special case of this equation occurs in the computation of the
condition number for an invariant subspace, but a combination of functions in this chapter allows the
solution of the general Sylvester equation.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the functions in this chapter return
information, such as condition numbers, that allow these effects to be assessed. First we discuss some
notation used in the error bounds of later sections.

The bounds usually contain the factor p nð Þ (or p m; nð Þ), which grows as a function of the matrix dimension
n (or matrix dimensions m and n). It measures how errors can grow as a function of the matrix dimension,
and represents a potentially different function for each problem. In practice, it usually grows just linearly;
p nð Þ � 10n is often true, although generally only much weaker bounds can be actually proved. We

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.15



normally describe p nð Þ as a ‘modestly growing’ function of n. For detailed derivations of various p nð Þ, see
Golub and Van Loan (1996) and Wilkinson (1965).

For linear equation (see Chapter f07) and least-squares solvers, we consider bounds on the relative error
x� x̂k k= xk k in the computed solution x̂, where x is the true solution. For eigenvalue problems we

consider bounds on the error �i � �̂i

�� �� in the ith computed eigenvalue �̂i, where �i is the true ith
eigenvalue. For singular value problems we similarly consider bounds �i � �̂ij j.
Bounding the error in computed eigenvectors and singular vectors v̂i is more subtle because these vectors
are not unique: even though we restrict v̂ik k2 ¼ 1 and vik k2 ¼ 1, we may still multiply them by arbitrary
constants of absolute value 1. So to avoid ambiguity we bound the angular difference between v̂i and the
true vector vi, so that

� vi; v̂ið Þ ¼ acute angle between vi and v̂i
¼ arccos vHi v̂i

�� ��. ð2Þ

Here arccos �ð Þ is in the standard range: 0 � arccos �ð Þ < 	. When � vi; v̂ið Þ is small, we can choose a
constant � with absolute value 1 so that �vi � v̂ik k2 	 � vi; v̂ið Þ.
In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will use

angle to measure the difference between a computed space Ŝ and the true space S:

� S; Ŝ
� �

¼ acute angle between S and Ŝ
¼ max

s 2 S
s 6¼ 0

min
ŝ 2 Ŝ
ŝ 6¼ 0

� s; ŝð Þ or max
ŝ 2 Ŝ
ŝ 6¼ 0

min
s 2 S
s 6¼ 0

� s; ŝð Þ ð3Þ

� S; Ŝ
� �

may be computed as follows. Let S be a matrix whose columns are orthonormal and span S.

Similarly let Ŝ be an orthonormal matrix with columns spanning Ŝ. Then

� S; Ŝ
� �

¼ arccos�min SHŜ
� �

.

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like x̂� xk k= xk k
and angular errors like � v̂i; við Þ are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and supply
little extra information in the interesting case of small errors. These bounds are indicated by using the
symbol 
< , or ‘approximately less than’, instead of the usual �. Thus, when these bounds are close to 1
or greater, they indicate that the computed answer may have no significant digits at all, but do not
otherwise bound the error.

A number of functions in this chapter return error estimates and/or condition number estimates directly. In
other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these estimates,
and a number of the Chapter f08 example programs, for the driver functions, implement these code
fragments.

2.14.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the x minimizing Ax� bk k2. Let x̂ be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and has
full rank.

Then the computed solution x̂ has a small normwise backward error. In other words x̂ minimizes
Aþ Eð Þx̂� bþ fð Þk k2, where

max
Ek k2
Ak k2

;
fk k2
bk k2

� �
� p nð Þ


and p nð Þ is a modestly growing function of n and 
 is the machine precision. Let
�2 Að Þ ¼ �max Að Þ=�min Að Þ, � ¼ Ax� bk k2, and sin �ð Þ ¼ �= bk k2. Then if p nð Þ
 is small enough, the

Introduction – f08 NAG C Library Manual

f08.16 [NP3660/8]



error x̂� x is bounded by

x� x̂k k2
xk k2 
< p nð Þ
 2�2 Að Þ

cos �ð Þ þ tan �ð Þ�2
2 Að Þ

	 

.

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (1996) for error bounds in this case, as well
as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the
linear system of equations

I A
AT 0

� �
r
x

� �
¼ b

0

� �
.

By solving this linear system (see Chapter f07) component-wise error bounds can also be obtained
Arioli et al. (1989).

2.14.2 The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (1996)).

The computed SVD, Û�̂V̂T, is nearly the exact SVD of Aþ E, i.e., Aþ E ¼ Û þ 
Û
� �

�̂ V̂ þ 
V̂
� �

is the

true SVD, so that Û þ 
Û and V̂ þ 
V̂ are both orthogonal, where Ek k2= Ak k2 � p m; nð Þ
,

Û
�� �� � p m; nð Þ
, and 
V̂

�� �� � p m; nð Þ
. Here p m; nð Þ is a modestly growing function of m and n and

 is the machine precision. Each computed singular value �̂i differs from the true �i by an amount
satisfying the bound

�̂i � �ij j � p m; nð Þ
�1.

Thus large singular values (those near �1) are computed to high relative accuracy and small ones may not
be.

The angular difference between the computed left singular vector ûi and the true ui satisfies the
approximate bound

� ûi; uið Þ 
<
p m; nð Þ
 Ak k2

gapi

where

gapi ¼ min
j 6¼i

�i � �j

�� ��
is the absolute gap between �i and the nearest other singular value. Thus, if �i is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed
right singular vector v̂i and the true vector vi. The gaps may be easily obtained from the computed singular
values.

Let Ŝ be the space spanned by a collection of computed left singular vectors ûi; i 2 If g, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

� Ŝ;S
� �


<
p m; nð Þ
 Ak k2

gapI
.

where

gapI ¼ min �i � �j

�� �� for i 2 I ; j =2 I
� �

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster of

close singular values which is far away from any other singular value may have a well determined space Ŝ
even if its individual singular vectors are ill-conditioned. The same bound applies to a set of right singular
vectors v̂i; i 2 If g.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed much
more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has non-zero entries only on the

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.17



main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a dense
matrix to bidiagonal form B can introduce additional errors, so the following bounds for the bidiagonal
case do not apply to the dense case.

Using the functions in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

�̂i � �ij j � p m; nð Þ
�i.

The computed left singular vector ûi has an angular error at most about

� ûi; uið Þ 
<
p m; nð Þ

relgapi

where

relgapi ¼ min
j 6¼i

�i � �j

�� ��= �i þ �j

� �
is the relative gap between �i and the nearest other singular value. The same bound applies to the right
singular vector v̂i and vi. Since the relative gap may be much larger than the absolute gap, this error bound
may be much smaller than the previous one. The relative gaps may be easily obtained from the computed
singular values.

2.14.3 The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition Ẑ�̂ẐT is nearly the exact eigendecomposition of Aþ E, i.e.,

Aþ E ¼ Ẑ þ 
Ẑ
� �

�̂ Ẑ þ 
Ẑ
� �T

is the true eigendecomposition so that Ẑ þ 
Ẑ is orthogonal, where

Ek k2= Ak k2 � p nð Þ
 and 
Ẑ
�� ��

2
� p nð Þ
 and p nð Þ is a modestly growing function of n and 
 is the

machine precision. Each computed eigenvalue �̂i differs from the true �i by an amount satisfying the
bound

�̂i � �i

�� �� � p nð Þ
 Ak k2.

Thus large eigenvalues (those near max
i

�ij j ¼ Ak k2) are computed to high relative accuracy and small ones

may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the approximate
bound

� ẑi; zið Þ 
<
p nð Þ
 Ak k2

gapi

if p nð Þ
 is small enough, where

gapi ¼ min
j 6¼i

�i � �j

�� ��
is the absolute gap between �i and the nearest other eigenvalue. Thus, if �i is close to other eigenvalues,
its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors ẑi; i 2 If g, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

� Ŝ; S
� �


<
p nð Þ
 Ak k2

gapI

where

gapI ¼ min �i � �j

�� �� for i 2 I ; j =2 I
� �

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close

Introduction – f08 NAG C Library Manual

f08.18 [NP3660/8]



eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace Ŝ
even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , functions in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.

2.14.4 The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A� �B, AB� �I and BA� �I . In each case A and B are
real symmetric (or complex Hermitian) and B is positive-definite. We consider each case in turn, assuming
that functions in this chapter are used to transform the generalized problem to the standard symmetric
problem, followed by the solution of the symmetric problem. In all cases

gapi ¼ min
j 6¼i

�i � �j

�� ��
is the absolute gap between �i and the nearest other eigenvalue.

1. A� �B. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an amount

�̂i � �i

�� �� 
< p nð Þ
 B�1
�� ��

2
Ak k2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

� ẑi; zið Þ 
<
p nð Þ
 B�1

�� ��
2
Ak k2 �2 Bð Þð Þ1=2

gapi
.

2. AB� �I or BA� �I. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an
amount

�̂i � �i

�� �� 
< p nð Þ
 Bk k2 Ak k2.

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

� ẑi; zið Þ 
<
q nð Þ
 Bk k2 Ak k2 �2 Bð Þð Þ1=2

gapi
.

These error bounds are large when B is ill-conditioned with respect to inversion (�2 Bð Þ is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here. One
way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as for
example with a graded matrix.

1. A� �B. Let D ¼ diag b�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by DBD and A by

DAD in the above bounds.

2. AB� �I or BA� �I. Let D ¼ diag b�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by DBD

and A by D�1AD�1 in the above bounds.

Further details can be found in Anderson et al. (1999).

2.14.5 The non-symmetric eigenproblem

The non-symmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarize the bounds. Further details can be found in Anderson et al. (1999).

We let �̂i be the ith computed eigenvalue and �i the ith true eigenvalue. Let v̂i be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi ¼ �ivi). If I is a subset of the integers

from 1 to n, we let �I denote the average of the selected eigenvalues: �I ¼
P
i2I

�i

� �
=
P
i2I

1

� �
, and similarly

for �̂I. We also let SI denote the subspace spanned by vi; i 2 If g; it is called a right invariant subspace

because if v is any vector in SI then Av is also in SI . ŜI is the corresponding computed subspace.

The algorithms for the non-symmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices Aþ Eð ÞE, where

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.19



Ek k � p nð Þ
 Ak k. Some of the bounds are stated in terms of Ek k2 and others in terms of Ek kF ; one may
use p nð Þ
 for either quantity.

Functions are provided so that, for each (�̂i; v̂i) pair the two values si and sepi, or for a selected subset I of
eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true for
sufficiently small Ek k, (which is why they are called asymptotic):

Simple eigenvalue �̂i � �i

�� �� 
< Ek k2=si

Eigenvalue cluster �̂I � �I

�� �� 
< Ek k2=sI

Eigenvector � #̂i; #i

� �

< Ek kF=sepi

Invariant subspace � ŜI ; SI
� �


< Ek kF=sepI

Table 2
Asymptotic error bounds for the non-symmetric

eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small Ek k. The
global error bounds of Table 3 are guaranteed to hold for all Ek kF < s� sep=4:

Simple eigenvalue �̂i � �i

�� �� � n Ek k2=si Holds for all E

Eigenvalue cluster �̂I � �I

�� �� � 2 Ek k2=sI Requires Ek kF < sI � sepI=4

Eigenvector � #̂i; #i

� �
� arctan 2 Ek kF= sepi � 4 Ek kF=si

� �� � Requires Ek kF < si � sepi=4

Invariant subspace � ŜI ; SI
� �

� arctan 2 Ek kF= sepI � 4 Ek kF=sI
� �� �

Requires Ek kF < sI � sepI=4

Table 3
Global error bounds for the non-symmetric eigenproblem

2.14.6 Balancing and condition for the non-symmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper

triangular (closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A0 is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to reduce it
to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of A0 more

nearly equal in norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect to the
eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter, II/11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously. Scaling,
however, does change their interpretation and further details can be found in Anderson et al. (1999).

2.14.7 The generalized non-symmetric eigenvalue problem

The algorithms for the generalized non-symmetric eigenvalue problem are normwise backward stable: they
compute the exact eigenvalues (as the pairs �; �ð Þ), eigenvectors and deflating subspaces of slightly
perturbed pairs Aþ E;Bþ Fð Þ, where

E;Fð Þk kF � p nð Þ
 A;Bð Þk kF .

Introduction – f08 NAG C Library Manual

f08.20 [NP3660/8]



2.14.8 Balancing the generalized eigenvalue problem

As with the standard non-symmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair A;Bð Þ in order to make its eigenproblem easier; permutation and scaling, which
together are referred to as balancing, as indicated in the following two steps.

1. The balancing function first attempts to permute A and B to block upper triangular form by a
similarity transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23

F33

0
@

1
A,

PBPT ¼ G ¼
G11 G12 G13

G22 G23

G33

0
@

1
A,

where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix F11;G11ð Þ and G33;H33ð Þ are generalized eigenvalues of A;Bð Þ. The rest of
the generalized eigenvalues are given by the matrix pair F22;G22ð Þ. Subsequent operations to
compute the eigenvalues of A;Bð Þ need only be applied to the matrix F22;G22ð Þ; this can save a
significant amount of work if F22;G22ð Þ is smaller than the original matrix pair A;Bð Þ. If no suitable
permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing function applies a diagonal similarity transformation to F;Gð Þ, to make the rows and
columns of F22;G22ð Þ as close as possible in the norm:

DFD�1 ¼
I

D22

I

0
@

1
A F11 F12 F13

F22 F23

F33

0
@

1
A I

D�1
22

I

0
@

1
A,

DGD�1 ¼
I

D22

I

0
@

1
A G11 G12 G13

G22 G23

G33

0
@

1
A I

D�1
22

I

0
@

1
A.

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the norm
of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9 Other problems

Error bounds for other problems such as the generalized linear least-squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the functions in this chapter use what is termed a block partitioned algorithm. This means
that at each major step of the algorithm a block of rows or columns is updated, and much of the
computation is performed by matrix-matrix operations on these blocks. The matrix-matrix operations are
performed by calls to the Level 3 BLAS (see Chapter f16), which are the key to achieving high
performance on many modern computers. In the case of the QR algorithm for reducing an upper
Hessenberg matrix to Schur form, a multishift strategy is used in order to improve performance. See
Golub and Van Loan (1996) or Anderson et al. (1999) for more about block partitioned algorithms and the
multishift strategy.

The performance of a block partitioned algorithm varies to some extent with the block size – that is, the
number of rows or columns per block. This is a machine-dependent argument, which is set to a suitable
value when the library is implemented on each range of machines. You do not normally need to be aware
of what value is being used. Different block sizes may be used for different functions. Values in the range
16 to 64 are typical.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.21



On more conventional machines there is often no advantage from using a block partitioned algorithm, and
then the functions use an unblocked algorithm (effectively a block size of 1), relying solely on calls to the
Level 2 BLAS (see Chapter f16 again).

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

The tables in the following sub-sections show the functions which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG function short name
and the LAPACK function name from which the NAG function long name is derived by prepending nag_
(see Section 3.2).

3.1.1 Computational functions

It is possible to solve problems by calling two or more functions in sequence. Some common sequences
of functions are indicated in the tables in the following sub-sections; an asterisk (�) against a function
name means that the sequence of calls is illustrated in the example program for that function.

It should be noted that all the LAPACK computational functions from Release 3 are included in the NAG
C Library and can be called by their LAPACK name*, although not all of these functions are currently
documented in Chapters f07 and f08.

3.1.1.1 Orthogonal factorizations

Functions are provided for QR factorization (with and without column pivoting), and for LQ factorization
(without pivoting only), of a general real or complex rectangular matrix.

The factorization functions do not form the matrix Q explicitly, but represent it as a product of elementary
reflectors (see Section 3.3.6). Additional functions are provided to generate all or part of Q explicitly if it
is required, or to apply Q in its factored form to another matrix (specifically to compute one of the matrix

products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex).

Factorize
without
pivoting

Factorize
with pivoting

Generate
Matrix Q

Apply
matrix Q

QR factorization, real matrices nag_dgeqrf
(f08aec)

nag_dgeqpf
(f08bec)

nag_dorgqr
(f08afc)

nag_dormqr
(f08agc)

LQ factorization, real matrices nag_dgelqf
(f08ahc)

nag_dorglq
(f08ajc)

nag_dormlq
(f08akc)

QR factorization, complex matrices nag_zgeqrf
(f08asc)

nag_zgeqpf
(f08bsc)

nag_zungqr
(f08atc)

nag_zunmqr
(f08auc)

LQ factorization, complex matrices nag_zgelqf
(f08avc)

nag_zunglq
(f08awc)

nag_zunmlq
(f08axc)

To solve linear least-squares problems, as described in Sections 2.2.1 or 2.2.3, functions based on the QR
factorization can be used:

real data, full-rank problem f08aec*, f08agc, f16yjc
complex data, full-rank problem f08asc*, f08auc, f16zjc
real data, rank-deficient problem f08bec*, f08agc, f16yjc
complex data, rank-deficient problem f08bsc*, f08auc, f16zjc

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, functions based on the LQ factorization can be used:

Introduction – f08 NAG C Library Manual

f08.22 [NP3660/8]



real data, full-rank problem f08ahc*, f16yjc, f08akc
complex data, full-rank problem f08avc*, f16zjc, f08axc

3.1.1.2 Singular value problems

Functions are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form B

by an orthogonal transformation A ¼ QBPT (or by a unitary transformation A ¼ QBPH if A is complex).
Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1), or a band matrix
to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q or P explicitly; additional functions are
provided to generate all or part of them, or to apply them to another matrix, as with the functions for
orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The functions for reducing band matrices have options to generate Q or P if required.

Further functions are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same functions can be used to compute the singular value decomposition of a real or
complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q

or PT

Apply
matrix Q
or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR
algorithm)

real matrices nag_dgebrd
(f08kec)

nag_dorgbr
(f08kfc)

nag_dormbr
(f08kgc)

nag_dgbbrd
(f08lec)

nag_dbdsqr
(f08mec)

complex matrices nag_zgebrd
(f08ksc)

nag_zungbr
(f08ktc)

nag_zunmbr
(f08kuc)

nag_zgbbrd
(f08lsc)

nag_zbdsqr
(f08msc)

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors f08kec, f08kfc*, f08mec
complex matrix, singular values and vectors f08ksc, f08ktc*, f08msc

Rectangular matrix (banded)

real matrix, singular values and vectors f08lec
complex matrix, singular values and vectors f08lsc

To use the singular value decomposition to solve a linear least-squares problem, as described in
Section 2.4, the following functions are required:

real data: f08kec, f08kgc, f08kfc,
f08mec, f16yac

complex data: f08ksc, f08kuc, f08ktc,
f08msc, f16zac

3.1.1.3 Symmetric eigenvalue problems

Functions are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal form

T by an orthogonal similarity transformation A ¼ QTQT (or by a unitary transformation A ¼ QTQH if A is
complex). Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1) or in
packed storage (see Section 3.3.2); or a band matrix to use band storage (see Section 3.3.3).

The functions for reducing full matrices do not form the matrix Q explicitly; additional functions are
provided to generate Q, or to apply it to another matrix, as with the functions for orthogonal factorizations.
Explicit generation of Q is required before using the QR algorithm to find all the eigenvectors of A;

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.23



application of Q to another matrix is required after eigenvectors of T have been found by inverse iteration,
in order to transform them to eigenvectors of A.

The functions for reducing band matrices have an option to generate Q if required.

Reduce to
tridiagonal
form

Generate
matrix Q

Apply matrix
Q

real symmetric matrices nag_dsytrd
(f08fec)

nag_dorgtr
(f08ffc)

nag_dormtr
(f08fgc)

real symmetric matrices (packed storage) nag_dsptrd
(f08gec)

nag_dopgtr
(f08gfc)

nag_dopmtr
(f08ggc)

real symmetric band matrices nag_dsbtrd
(f08hec)

complex Hermitian matrices nag_zhetrd
(f08fsc)

nag_zungtr
(f08ftc)

nag_zunmtr
(f08fuc)

complex Hermitian matrices (packed storage) nag_zhptrd
(f08gsc)

nag_zupgtr
(f08gtc)

nag_zupmtr
(f08guc)

complex Hermitian band matrices nag_zhbtrd
(f08hsc)

A variety of functions are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same functions can be used to compute eigenvalues and eigenvectors of
a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real or Complex Hermitian

all eigenvalues (root-free QR algorithm) f08jfc
all eigenvalues (root-free QR algorithm called by divide-and-conquer) f08jcc
selected eigenvalues (bisection) f08jjc

The original (non-reduced) matrix is Real

all eigenvalues and eigenvectors (QR algorithm) f08jec
all eigenvalues and eigenvectors (divide-and-conquer) f08jcc
all eigenvalues and eigenvectors (positive-definite case) f08jgc
selected eigenvectors (inverse iteration) f08jkc

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) f08jsc
all eigenvalues and eigenvectors (positive-definite case) f08juc
selected eigenvectors (inverse iteration) f08jxc

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08fcc
all eigenvalues and eigenvectors (using QR algorithm) f08fec, f08ffc*, f08jec
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fec, f08jjc, f08jkc,

f08fgc*

Introduction – f08 NAG C Library Manual

f08.24 [NP3660/8]



Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08gcc
all eigenvalues and eigenvectors (using QR algorithm) f08gec, f08gfc*, f08jec
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gec, f08jjc, f08jkc,

f08ggc*

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) f08hcc
all eigenvalues and eigenvectors (using QR algorithm) f08hec*, f08jec

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08fqc
all eigenvalues and eigenvectors (using QR algorithm) f08fsc, f08ftc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fsc, f08jjc, f08jxc,

f08fuc*

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08gqc
all eigenvalues and eigenvectors (using QR algorithm) f08gsc, f08gtc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gsc, f08jjc, f08jxc,

f08guc*

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) f08hqc
all eigenvalues and eigenvectors (using QR algorithm) f08hsc*, f08jsc

3.1.1.4 Generalized symmetric-definite eigenvalue problems

Functions are provided for reducing each of the problems Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x to an
equivalent standard eigenvalue problem Cy ¼ �y. Different functions allow the matrices to be stored either
conventionally or in packed storage. The positive-definite matrix B must first be factorized using a
function from Chapter f07. There is also a function which reduces the problem Ax ¼ �Bx where A and B
are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky factorization
for which a function in Chapter f08 is provided.

Reduce to standard
problem

Reduce to standard
problem (packed
storage)

Reduce to standard
problem (band
matrices)

real symmetric matrices nag_dsygst (f08sec) nag_dspgst (f08tec) nag_dsbgst (f08uec)

complex Hermitian matrices nag_zhegst (f08ssc) nag_zhpgst (f08tsc) nag_zhbgst (f08usc)

The equivalent standard problem can then be solved using the functions discussed in Section 3.1.1.3. For
example, to compute all the eigenvalues, the following functions must be called:

real symmetric-definite problem f07fdc, f08sec*, f08fec,
f08jfc

real symmetric-definite problem, packed storage f07gdc, f08tec*, f08gec,
f08jfc

real symmetric-definite banded problem f08ufc*, f08uec*, f08hec,
f08jfc

complex Hermitian-definite problem f07frc, f08ssc*, f08fsc,
f08jfc

complex Hermitian-definite problem, packed storage f07grc, f08tsc*, f08gsc,
f08jfc

complex Hermitian-definite banded problem f08utc*, f08usc*, f08hsc,
f08jfc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.25



If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; functions from Chapter f16
may be used for this.

3.1.1.5 Nonsymmetric eigenvalue problems

Functions are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an

orthogonal similarity transformation A ¼ QHQT (or by a unitary transformation A ¼ QHQH if A is
complex).

These functions do not form the matrix Q explicitly; additional functions are provided to generate Q, or to
apply it to another matrix, as with the functions for orthogonal factorizations. Explicit generation of Q is
required before using the QR algorithm on H to compute the Schur vectors; application of Q to another
matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to transform
them to eigenvectors of A.

Functions are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion functions are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to
Hessenberg
form

Generate
matrix Q

Apply matrix
Q

Balance Back-
transform
vectors after
balancing

real matrices nag_dgehrd
(f08nec)

nag_dorghr
(f08nfc)

nag_dormhr
(f08ngc)

nag_dgebal
(f08nhc)

nag_dgebak
(f08njc)

complex matrices nag_zgehrd
(f08nsc)

nag_zunghr
(f08ntc)

nag_zunmhr
(f08nuc)

nag_zgebal
(f08nvc)

nag_zgebak
(f08nwc)

Functions are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed in
Section 2.14.5.

Eigenvalues and
Schur
factorization (QR
algorithm)

Eigenvectors
from Hessenberg
form (inverse
iteration)

Eigenvectors
from Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices nag_dhseqr
(f08pec)

nag_dhsein
(f08pkc)

nag_dtrevc
(f08qkc)

nag_dtrsna
(f08qlc)

complex matrices nag_zhseqr
(f08psc)

nag_zhsein
(f08pxc)

nag_ztrevc
(f08qxc)

nag_ztrsna
(f08qyc)

Finally functions are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The functions nag_dtrexc (f08qfc) and nag_ztrexc
(f08qtc) simply swap two diagonal elements or blocks, and may need to be called repeatedly to achieve a
desired order. The functions nag_dtrsen (f08qgc) and nag_ztrsen (f08quc) perform the whole reordering
process for the important special case where a specified cluster of eigenvalues is to appear at the top of the
Schur form; if the Schur vectors are reordered at the same time, they yield an orthonormal basis of the
invariant subspace corresponding to the specified cluster of eigenvalues. These functions can also compute
the sensitivities of the cluster of eigenvalues and the invariant subspace.

Introduction – f08 NAG C Library Manual

f08.26 [NP3660/8]



Reorder Schur factorization Reorder Schur factorization, find
basis of invariant subspace and
estimate sensitivities

real matrices nag_dtrexc (f08qfc) nag_dtrsen (f08qgc)

complex matrices nag_ztrexc (f08qtc) nag_ztrsen (f08quc)

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization f08nec, f08nfc*, f08pec
real matrix, all eigenvalues and selected eigenvectors f08nec, f08pec, f08pkc,

f08ngc
real matrix, all eigenvalues and eigenvectors (with balancing) f08nhc*, f08nec, f08nfc,

f08pec, f08pkc, f08njc
complex matrix, all eigenvalues and Schur factorization f08nsc, f08ntc*, f08psc
complex matrix, all eigenvalues and selected eigenvectors f08nsc, f08psc, f08pxc,

f08nuc*
complex matrix, all eigenvalues and eigenvectors (with balancing) f08nvc*, f08nsc, f08ntc,

f08psc, f08pxc, f08nwc

3.1.1.6 Generalized non-symmetric eigenvalue problems

Functions are provided to reduce a real or complex matrix pair A1;R1ð Þ, where A1 is general and R1 is

upper triangular, to generalized upper Hessenberg form by orthogonal transformations A1 ¼ Q1HZT
1 ,

R1 ¼ Q1RZ
T
1 , (or by unitary transformations A1 ¼ Q1HZH

1 , R ¼ Q1R1Z
H
1 , in the complex case). These

functions can optionally return Q1 and/or Z1. Note that to transform a general matrix pair A;Bð Þ to the

form A1;R1ð Þ a QR factorization of B (B ¼ ~QR1) should first be performed and the matrix A1 obtained as

A1 ¼ ~QTA (see Section 3.1.1.1 above).

Functions are also provided to balance a general matrix pair before reducing it to generalized Hessenberg
form, as described in Section 2.14.8. Companion functions are provided to transform vectors of the
balanced pair to those of the original matrix pair.

Reduce to generalized
Hessenberg form

Balance Backtransform vectors
after balancing

real matrices nag_dgghrd (f08wec) nag_dggbal (f08whc) nag_dggbak (f08wjc)

complex matrices nag_zgghrd (f08wsc) nag_zggbal (f08wvc) nag_zggbak (f08wwc)

Functions are provided to compute the eigenvalues (as the pairs �; �ð Þ) and all or part of the generalized
Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be computed from
the generalized Schur form by back-substitution.

Eigenvalues and generalized Schur
factorization (QZ algorithm)

Eigenvectors from generalized Schur
factorization

real matrices nag_dhgeqz (f08xec) nag_dtgevc (f08ykc)

complex matrices nag_zhgeqz (f08xsc) nag_ztgevc (f08yxc)

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.27



real matrix pair, all eigenvalues (with balancing) f08whc, f08aec, f08agc,
f08wec, f08xec*

real matrix pair, all eigenvalues and generalized Schur factorization f08aec, f08agc, f08afc,
f08wec, f08xec

real matrix pair, all eigenvalues and eigenvectors (with balancing) f08whc, f08aec, f08agc,
f16qhc, f16qfc, f08afc,
f08wec, f08xec, f08ykc*,
f08wjc

complex matrix pair, all eigenvalues (with balancing) f08wvc, f08asc, f08auc,
f08wsc, f08xsc*

complex matrix pair, all eigenvalues and generalized Schur factorization f08asc, f08auc, f08atc,
f08wsc, f08xsc

complex matrix pair, all eigenvalues and eigenvectors (with balancing) f08wvc, f08asc, f08auc,
f16thc, f16tfc, f08atc,
f08wsc, f08xsc, f08yxc*,
f08wwc

3.1.1.7 Sylvester’s equation

Functions are provided to solve the real or complex Sylvester equation AX 
 XB ¼ C, where A and B are
upper quasi-triangular if real, or upper triangular if complex. To solve the general form of Sylvester’s
equation in which A and B are general square matrices, A and B must be reduced to upper (quasi-)
triangular form by the Schur factorization, using functions described in Section 3.1.1.5. For more details,
see the documents for the functions listed below.

solve Sylvester’s equation

real matrices nag_dtrsyl (f08qhc)

complex matrices nag_ztrsyl (f08qvc)

3.2 NAG Names and LAPACK Names

As well as the NAG function short name (beginning f08-), the tables in Section 3.1 show the LAPACK
function names in double precision.

The functions may be called either by their NAG short names or by their NAG long names which contain
their double precision LAPACK names.

References to Chapter f08 functions in the manual normally include the LAPACK double precision names,
for example nag_dgeqrf (f08aec). The LAPACK function names follow a simple scheme (which is similar
to that used for the BLAS in Chapter f16). Each name has the structure XYYZZZ, where the components
have the following meanings:

– the initial letter X indicates the data type (real or complex) and precision:

S – real, single precision
D – real, double precision
C – complex, single precision
Z – complex, double precision

– the 2nd and 3rd letters YY indicate the type of the matrix A or matrix pair A;Bð Þ (and in some cases
the storage scheme):

BD – bidiagonal
DI – diagonal
GB – general band
GE – general
GG – general pair (B may be triangular)
HG – generalized upper Hessenberg
HS – upper Hessenberg

Introduction – f08 NAG C Library Manual

f08.28 [NP3660/8]



OP – (real) orthogonal (packed storage)
UP – (complex) unitary (packed storage)
OR – (real) orthogonal
UN – (complex) unitary
PT – symmetric or Hermitian positive-definite tridiagonal
SB – (real) symmetric band
HB – (complex) Hermitian band
SP – symmetric (packed storage)
HP – Hermitian (packed storage)
ST – (real) symmetric tridiagonal
SY – symmetric
HE – Hermitian
TG – triangular pair (one may be quasi-triangular)
TR – triangular (or quasi-triangular)

– the last 3 letters ZZZ indicate the computation performed. For example, QRF is a QR factorization.

Thus the function nag_dgeqrf performs a QR factorization of a real general matrix in a double precision
implementation of the Library.

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;

– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional arrays.

These storage schemes are compatible with those used in Chapters f16 and f07, but different schemes for
packed, band and tridiagonal storage are used in a few older functions in Chapters f01, f02, f03 and f04.

In the examples below, � indicates an array element which need not be set and is not referenced by the
functions. The examples illustrate only the relevant leading rows and columns of the arrays.

3.3.1 Conventional storage

Matrices may be stored column-wise or row-wise as described in Section 2.2.1.4 of the Essential
Introduction: a matrix A is stored in a one-dimensional array a, with matrix element ai;j stored column-wise
in array element a½ j� 1ð Þ � pdaþ i� 1� or row-wise in array element a½ i� 1ð Þ � pdaþ j� 1� where pda
is the principle dimension of the array (i.e., the stride separating row or column elements of the matrix
respectively). Most functions in this chapter contain the order argument which can be set to
Nag_ColMajor for column-wise storage or Nag_RowMajor for row-wise storage of matrices. Where
groups of functions are intended to be used together, the value of the order argument passed must be
consistent throughout.

If a matrix is triangular (upper or lower, as specified by the argument uplo), only the elements of the
relevant triangle are stored; the remaining elements of the array need not be set. Such elements are
indicated by * in the examples below.

For example, when n ¼ 3:

order uplo Triangular matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11 � �a12a22 � a13a23a33

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.29



Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11a12a13 � a22a23 � �a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11a21a31 � a22a32 � �a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11 � �a21a22 � a31a32a33

functions which handle symmetric or Hermitian matrices allow for either the upper or lower triangle of
the matrix (as specified by uplo) to be stored in the corresponding elements of the array; the remaining
elements of the array need not be set.

For example, when n ¼ 3:

order uplo Hermitian matrix A Storage in array a

Nag_ColMajor Nag_Upper a11 a12 a13
�a12 a22 a23
�a13 �a23 a33

0
@

1
A a11 � �a12a22 � a13a23a33

Nag_RowMajor Nag_Upper a11 a12 a13
�a12 a22 a23
�a13 �a23 a33

0
@

1
A a11a12a13 � a22a23 � �a33

Nag_ColMajor Nag_Lower a11 �a21 �a31
a21 a22 �a32
a31 a32 a33

0
@

1
A a11a21a31 � a22a32 � �a33

Nag_RowMajor Nag_Lower a11 �a21 �a31
a21 a22 �a32
a31 a32 a33

0
@

1
A a11 � �a21a22 � a31a32a33

3.3.2 Packed storage

Symmetric, Hermitian or triangular matrices may be stored more compactly, if the relevant triangle (again
as specified by uplo) is packed by columns or rows in a one-dimensional array. In Chapters f07 and f08,
arrays which hold matrices in packed storage have names ending in P. The storage of matrix elements ai;j
are stored in the packed array ap as follows:

if uplo ¼ Nag_Upper then

if order ¼ Nag_ColMajor, aij is stored in ap½ i� 1ð Þ þ j j� 1ð Þ=2� for i � j;
if order ¼ Nag_RowMajor, aij is stored in ap½ j� 1ð Þ þ 2n� ið Þ i� 1ð Þ=2� for i � j;

if uplo ¼ Nag_Lower then

if order ¼ Nag_ColMajor, aij is stored in ap½ i� 1ð Þ þ 2n� jð Þ j� 1ð Þ=2� for j � i;
if order ¼ Nag_RowMajor, aij is stored in ap½ j� 1ð Þ þ i i� 1ð Þ=2� for j � i.

For example:

Introduction – f08 NAG C Library Manual

f08.30 [NP3660/8]



order uplo Triangle of matrix {\it A} Packed storage in array ap

Nag_ColMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11 a12a22|fflffl{zfflffl} a13a23a33|fflfflfflfflffl{zfflfflfflfflffl}

Nag_RowMajor Nag_Upper a11 a12 a13
a22 a23

a33

0
@

1
A a11a12a13|fflfflfflfflffl{zfflfflfflfflffl} a22a23|fflffl{zfflffl} a33

Nag_ColMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11a21a31|fflfflfflfflffl{zfflfflfflfflffl} a22a32|fflffl{zfflffl} a33

Nag_RowMajor Nag_Lower a11
a21 a22
a31 a32 a33

0
@

1
A a11 a21a22|fflffl{zfflffl} a31a32a33|fflfflfflfflffl{zfflfflfflfflffl}

Note that for real symmetric matrices, packing the upper triangle by columns is equivalent to packing the
lower triangle by rows; packing the lower triangle by columns is equivalent to packing the upper triangle
by rows. (For complex Hermitian matrices, the only difference is that the off-diagonal elements are
conjugated.)

3.3.3 Band storage

A band matrix with kl subdiagonals and ku superdiagonals may be stored compactly in a notional two-
dimensional array with kl þ ku þ 1 rows and n columns if stored column-wise or n rows and kl þ ku þ 1
columns if stored row-wise. In column-major order, elements of a column of the matrix are stored
contiguously in the array, and elements of the diagonals of the matrix are stored with constant stride (i.e.,
in a row of the two-dimensional array). In row-major order, elements of a row of the matrix are stored
contiguously in the array, and elements of a diagonal of the matrix are stored with constant stride (i.e., in a
column of the two-dimensional array). These storage schemes should only be used in practice if kl,
ku � n, although the functions in Chapters f07 and f08 work correctly for all values of kl and ku. In
Chapters f07 and f08 arrays which hold matrices in band storage have names ending in B.

To be precise, elements of matrix elements aij are stored as follows:

if order ¼ Nag_ColMajor, aij is stored in ab½ ku þ i� jð Þ � pdabþ j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ kl þ j� ið Þ � pdabþ i�,

where pdab � kl þ ku þ 1 is the stride between diagonal elements and where
max 1; i� klð Þ � j � min n; iþ kuð Þ.
For example, when n ¼ 5, kl ¼ 2 and ku ¼ 1:

Band matrix A Band storage in array ab

order ¼ Nag_ColMajor order ¼ Nag_RowMajor

a11 a12
a21 a22 a23
a31 a32 a33 a34

a42 a43 a44 a45
a53 a54 a55

* a12 a23 a34 a45
a11 a22 a33 a44 a55
a21 a32 a43 a54 *
a31 a42 a53 * *

* * a11 a12
* a21 a22 a23
a31 a32 a33 a34
a42 a43 a44 a45
a53 a54 a55 *

The elements marked � in the upper left and lower right corners of the array ab need not be set, and are
not referenced by the functions.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.31



Triangular band matrices are stored in the same format, with either kl ¼ 0 if upper triangular, or ku ¼ 0 if
lower triangular.

For symmetric or Hermitian band matrices with k subdiagonals or superdiagonals, only the upper or lower
triangle (as specified by uplo) need be stored:

if uplo ¼ Nag_Upper then

if order ¼ Nag_ColMajor, aij is stored in ab½ j� 1ð Þ � pdabþ k þ i� j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ i� 1ð Þ � pdabþ j� i�,

for max 1; j� kð Þ � i � j;

if uplo ¼ Nag_Lower then

if order ¼ Nag_ColMajor, aij is stored in ab½ j� 1ð Þ � pdabþ i� j�;
if order ¼ Nag_RowMajor, aij is stored in ab½ i� 1ð Þ � pdabþ k þ j� i�,

for j � i � min n; jþ kð Þ,
where pdab � k þ 1 is the stride separating diagonal matrix elements in the array ab.

For example, when n ¼ 5 and k ¼ 2:

uplo Hermitian band matrix A Band storage in array a

order ¼ Nag_ColMajor order ¼ Nag_RowMajor

Nag_Upper a11 a12 a13
�a12 a22 a23 a24
�a13 �a23 a33 a34 a35

�a24 �a34 a44 a45
�a35 �a45 a55

0
BBBB@

1
CCCCA

* * a13 a24 a35
* a12 a23 a34 a45
a11 a22 a33 a44 a55

a11 a12 a13
a22 a23 a24
a33 a34 a35
a44 a45 *
a55 * *

Nag_Lower a11 �a21 �a31
a21 a22 �a32 �a42
a31 a32 a33 �a43 �a53

a42 a43 a44 �a54
a53 a54 a55

0
BBBB@

1
CCCCA

a11 a22 a33 a44 a55
a21 a32 a43 a54 *
a31 a42 a53 * *

* * a11
* a21 a22
a31 a32 a33
a42 a43 a44
a53 a54 a55

Note that different storage schemes for band matrices are used by some functions in Chapters f01, f02, f03
and f04.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n� 1 containing the off-diagonal elements. (Older
functions in Chapter f02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Complex Hermitian matrices have diagonal matrices that are by definition purely real. In addition, some
complex triangular matrices computed by f08 functions are defined by the algorithm to have real diagonal
elements – in QR factorization, for example.

If such matrices are supplied as input to f08 functions, the imaginary parts of the diagonal elements are not
referenced, but are assumed to be zero. If such matrices are returned as output by f08 functions, the
computed imaginary parts are explicitly set to zero.

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG Library
as a product of elementary reflectors – also referred to as elementary Householder matrices (usually

Introduction – f08 NAG C Library Manual

f08.32 [NP3660/8]



denoted Hi). For example,

Q ¼ H1H2 � � �Hk .

You need not be aware of the details, because functions are provided to work with this representation,

either to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH in the complex
case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the form

H ¼ I � �vvH ð4Þ

where � is a scalar, and v is an n element vector, with �j j2 vk k2
2 ¼ 2� Re �ð Þ; v is often referred to as the

Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation 4ð Þ, which can be removed in various ways. The
representation used in Chapter f08 and in LAPACK (which differs from those used in some of the
functions in Chapters f01, f02, f04 and f16) sets v1 ¼ 1; hence v1 need not be stored. In real arithmetic,
1 � � � 2, except that � ¼ 0 implies H ¼ I .

In complex arithmetic, � may be complex, and satisfies 1 � Re �ð Þ � 2 and � � 1j j � 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property. The
advantage of allowing � to be complex is that, given an arbitrary complex vector x;H can be computed so
that

HHx ¼ � 1; 0; . . . ; 0ð ÞT

with real �. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Argument Conventions

3.4.1 Option arguments

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

f08fec(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, M or N) to be passed as zero, in which case the
computation (or part of it) is skipped. Negative dimensions are regarded as an error.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.33



4 Decision Trees

The following decision trees are principally for the computation (general purpose) functions.

4.1 General Purpose Functions (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes Is A tridiagonal? yes f08jfc or f08jcc

no

Is A band matrix? yes
(f08hec f08jfc) or

f08hcc

no

Is one triangle of A
stored as a linear array? yes

(f08gec f08jfc) or
f08gcc

no

(f08fec f08jfc) or f08fcc

no

Is A tridiagonal? yes
f08jjc

no

Is A a band matrix? yes f08hec f08jjc

no

Is one triangle of A
stored as a linear array? yes

f08gec f08jjc

no

f08fec f08jjc

no

Are all eigenvalues and
eigenvectors required? yes Is A tridiagonal? yes

f08jec or f08jcc

no

Is A a band matrix? yes
(f08hec f08jec) or

f08hcc

no

Is one triangle of A
stored as a linear array? yes

(f08gec f08gfc f08jec)
or f08gcc

no

(f08fec f08ffc f08jec) or
f08fcc

no

Is A tridiagonal? yes f08jjc f08jkc

no

Is one triangle of A
stored as a linear array? yes

f08gec f08jjc f08jkc
f08ggc

no

f08fec f08jjc f08jkc
f08fgc

Introduction – f08 NAG C Library Manual

f08.34 [NP3660/8]



Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jfc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc f08tec f08gec

f08jfc

no

f07fdc f08sec f08fec
f08jfc

no

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jjc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc f08tec f08gec

f08jjc

no

f07fdc f08sec f08gec
f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc f08tec f08gec
f08gfc f08jec f16plc

no

f07fdc f08sec f08fec
f08ffc f08jec f16yjc

no

Are A and B band
matrices? yes

f08ufc f08uec f08hec
f08jkc f16yjc

no

Are A and B stored with
one triangle as a linear
array?

yes

f07gdc f08tec f08gec
f08jjc f08jkc f08ggc

f16plc

no

f07fdc f08sec f08fec
f08jjc f08jkc f08fgc

f16yjc

Note: the functions for band matrices only handle the problem Ax ¼ �Bx; the other functions handle all three
types of problems (Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x) except that, if the problem is BAx ¼ �x and eigenvectors
are required, f16phc must be used instead of f16plc and f16yfc instead of f16yjc.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.35



Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required? yes Is A an upper Hessenberg matrix? yes
f08pec

no

f08nhc f08nec f08pec

no

Is the Schur factorization of A
required? yes Is A an upper Hessenberg matrix? yes

f08pec

no

f08nec f08nfc f08pec f08njc

no

Are all eigenvectors required? yes Is A an upper Hessenberg matrix? yes
f08pec f08qkc

no

f08nhc f08nec f08nfc f08pec
f08qkc f08njc

no

Is A an upper Hessenberg matrix? yes f08pec f08pkc

no

f08nhc f08nec f08pec f08pkc
f08ngc f08njc

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required? yes
Are A and B in generalized upper
Hessenberg form? yes f08xec

no

f08whc f08aec f08agc f08wec
f08xec

no

Is the generalized Schur
factorization of A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

f08xec

no

f08aec f08agc f16qhc f16qfc
f08afc f08wec f08xec f08ykc

no

Are A and B in generalized upper
Hessenberg form? yes f08xec f08ykc

no

f08whc f08aec f08agc f16qhc
f16qfc f08afc f08wec f08xec

f08ykc f08wjc

Introduction – f08 NAG C Library Manual

f08.36 [NP3660/8]



Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes Is A a band matrix? yes

(f08hsc f08jfc) or
f08hqc

no

Is one triangle of A
stored as a linear array? yes

(f08gsc f08jfc) or
f08gqc

no

(f08fsc f08jfc) or f08fqc

no

Is A a band matrix? yes
f08hsc f08jjc

no

Is one triangle of A
stored as a linear array? yes

f08gsc f08jjc

no

f08fsc f08jjc

no

Are all eigenvalues and
eigenvectors required? yes Is A a band matrix? yes

(f08hsc f08jsc) or
f08hqc

no

Is one triangle of A
stored as a linear array? yes

(f08gsc f08gtc f08jsc) or
f08gqc

no

(f08fsc f08ftc f08jsc) or
f08fqc

no

Is one triangle of A
stored as a linear array? yes

f08gsc f08jjc f08jxc
f08guc

no

f08fsc f08jjc f08jxc
f08fuc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.37



Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all eigenvalues
required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07grc f08tsc f08gsc

f08jfc

no

f07frc f08ssc f08fsc
f08jfc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07grc f08tsc f08gsc

f08jjc

no

f07frc f08ssc f08gsc
f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07grc f08tsc f08gsc

f08gtc f16psc

no

f07frc f08ssc f08fsc
f08ftc f08jsc f16zjc

no

Are A and B stored with
one triangle as a linear
array?

yes

f07grc f08tsc f08gsc
f08jjc f08jxc f08guc

f16slc

no

f07frc f08ssc f08fsc
f08jjc f08jxc f08fuc

f16zjc

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required? yes Is A an upper Hessenberg matrix? yes f08psc

no

f08nvc f08nsc f08psc

no

Is the Schur factorization of A
required? yes Is A an upper Hessenberg matrix? yes f08psc

no

f08nsc f08ntc f08psc f08nwc

no

Are all eigenvectors required? yes Is A an upper Hessenberg matrix? yes f08psc f08qxc

no

f08nvc f08nsc f08ntc f08psc
f08qxc f08nwc

no

Is A an upper Hessenberg matrix? yes
f08psc f08pxc

no

f08nvc f08nsc f08psc f08pxc
f08nuc f08nwc

Introduction – f08 NAG C Library Manual

f08.38 [NP3660/8]



Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required? yes
Are A and B in generalized upper
Hessenberg form? yes f08xsc

no

f08wvc f08asc f08auc f08wsc
f08xsc

no

Is the generalized Schur
factorization of A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

f08xsc

no

f08asc f08auc f16thc f16tfc f08atc
f08wsc f08xsc f08yxc

no

Are A and B in generalized upper
Hessenberg form? yes f08xsc f08yxc

no

f08wvc f08asc f08auc f16thc
f16tfc f08atc f08wsc f08xsc

f08yxc f08wwc

4.2 General Purpose Functions (singular value decomposition)

Tree 9

Is A a complex matrix? yes Is A banded? yes
f08lsc f08msc

no

Are singular values only required? yes
f08ksc f08msc

no

f08ksc f08ktc f08msc

no

Is A bidiagonal? yes f08mec

no

Is A banded? yes
f08lec f08mec

no

Are singular values only required? yes
f08kec f08mec

no

f08kec f08kfc f08mec

5 Index

Backtransformation of eigenvectors from those of balanced forms:
complex matrix ................................................................................................... nag_zgebak (f08nwc)
complex matrix ................................................................................................... nag_zggbak (f08wwc)
real matrix ......................................................................................................... nag_dgebak (f08njc)
real matrix ......................................................................................................... nag_dggbak (f08wjc)

Balancing:
complex general matrix .................................................................................... nag_zgebal (f08nvc)
complex general matrix .................................................................................... nag_zggbal (f08wvc)
real general matrix ............................................................................................. nag_dgebal (f08nhc)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.39



real general matrix ............................................................................................. nag_dggbal (f08whc)
Eigenvalue problems for condensed forms of matrices:

complex Hermitian matrix:
eigenvalues and eigenvectors:

band matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage

nag_zhbevd (f08hqc)
general matrix:

all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zheevd (f08fqc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage

nag_zhpevd (f08gqc)
eigenvalues only:

band matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using packed
storage ................................................................................................ nag_zhbevd (f08hqc)

general matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_zheevd (f08fqc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using packed
storage ................................................................................................ nag_zhpevd (f08gqc)

complex upper Hessenberg matrix, reduced from complex general matrix:
eigenvalues and Schur factorization ............................................................... nag_zhseqr (f08psc)
selected right and/or left eigenvectors by inverse iteration ........................... nag_zhsein (f08pxc)

real bidiagonal matrix:
singular value decomposition:

after reduction from complex general matrix .......................................... nag_zbdsqr (f08msc)
after reduction from real general matrix ................................................ nag_dbdsqr (f08mec)

real symmetric matrix:
eigenvalues and eigenvectors:

band matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsbevd (f08hcc)

general matrix:
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsyevd (f08fcc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage

nag_dspevd (f08gcc)
eigenvalues only:

band matrix:
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_dsbevd (f08hcc)
general matrix:

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm
nag_dsyevd (f08fcc)

all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using packed
storage ................................................................................................ nag_dspevd (f08gcc)

real symmetric tridiagonal matrix:
eigenvalues and eigenvectors:

after reduction from complex Hermitian matrix:
all eigenvalues and eigenvectors ......................................................... nag_zsteqr (f08jsc)
all eigenvalues and eigenvectors, positive-definite matrix ............... nag_zpteqr (f08juc)
selected eigenvectors by inverse iteration .......................................... nag_zstein (f08jxc)

all eigenvalues and eigenvectors ............................................................... nag_dsteqr (f08jec)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm ... nag_dstevd (f08jcc)
all eigenvalues and eigenvectors, positive-definite matrix ..................... nag_dpteqr (f08jgc)
selected eigenvectors by inverse iteration ................................................ nag_dstein (f08jkc)

eigenvalues only:
all eigenvalues by root-free QR algorithm ............................................. nag_dsterf (f08jfc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

nag_dstevd (f08jcc)
selected eigenvalues by bisection ............................................................ nag_dstebz (f08jjc)

Introduction – f08 NAG C Library Manual

f08.40 [NP3660/8]



real upper Hessenberg matrix, reduced from real general matrix:
eigenvalues and Schur factorization ............................................................... nag_dhseqr (f08pec)
selected right and/or left eigenvectors by inverse iteration ........................... nag_dhsein (f08pkc)

Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg form ................................................... nag_zhgeqz (f08xsc)
real generalized upper Hessenberg form ......................................................... nag_dhgeqz (f08xec)

Left and right eigenvectors of a pair of matrices:
complex upper triangular matrices ..................................................................... nag_ztgevc (f08yxc)
real quasi-triangular matrices ........................................................................... nag_dtgevc (f08ykc)

LQ factorization and related operations:
complex matrices:

apply unitary matrix ....................................................................................... nag_zunmlq (f08axc)
factorization ...................................................................................................... nag_zgelqf (f08avc)
form all or part of unitary matrix .................................................................. nag_zunglq (f08awc)

real matrices:
apply orthogonal matrix ................................................................................. nag_dormlq (f08akc)
factorization ...................................................................................................... nag_dgelqf (f08ahc)
form all or part of orthogonal matrix ............................................................ nag_dorglq (f08ajc)

Operations on Schur factorization of a general matrix:
complex matrix:

compute left and/or right eigenvectors ......................................................... nag_ztrevc (f08qxc)
estimate sensitivities of eigenvalues and/or eigenvectors .............................. nag_ztrsna (f08qyc)
re-order Schur factorization ........................................................................... nag_ztrexc (f08qtc)
re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities

nag_ztrsen (f08quc)
real matrix:

compute left and/or right eigenvectors ......................................................... nag_dtrevc (f08qkc)
estimate sensitivities of eigenvalues and/or eigenvectors .............................. nag_dtrsna (f08qlc)
re-order Schur factorization ........................................................................... nag_dtrexc (f08qfc)
re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities

nag_dtrsen (f08qgc)
QR factorization and related operations:

complex matrices:
apply unitary matrix ....................................................................................... nag_zunmqr (f08auc)
factorization ...................................................................................................... nag_zgeqrf (f08asc)
factorization, with column pivoting ............................................................... nag_zgeqpf (f08bsc)
form all or part of unitary matrix .................................................................. nag_zungqr (f08atc)

real matrices:
apply orthogonal matrix ................................................................................. nag_dormqr (f08agc)
factorization ...................................................................................................... nag_dgeqrf (f08aec)
factorization, with column pivoting ............................................................... nag_dgeqpf (f08bec)
form all or part of orthogonal matrix ............................................................ nag_dorgqr (f08afc)

Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real matrices .................................................................. nag_dgghrd (f08wec)
unitary reduction, complex matrices .................................................................. nag_zgghrd (f08wsc)

Reduction of eigenvalue problems to condensed forms, and related operations:
complex general matrix to upper Hessenberg form:

apply orthogonal matrix ................................................................................. nag_zunmhr (f08nuc)
form orthogonal matrix ................................................................................. nag_zunghr (f08ntc)
reduce to Hessenberg form ........................................................................... nag_zgehrd (f08nsc)

complex Hermitian band matrix to real symmetric tridiagonal form ............ nag_zhbtrd (f08hsc)
complex Hermitian matrix to real symmetric tridiagonal form:

apply unitary matrix ....................................................................................... nag_zunmtr (f08fuc)
apply unitary matrix, packed storage ............................................................ nag_zupmtr (f08guc)
form unitary matrix ....................................................................................... nag_zungtr (f08ftc)
form unitary matrix, packed storage ............................................................... nag_zupgtr (f08gtc)
reduce to tridiagonal form .............................................................................. nag_zhetrd (f08fsc)
reduce to tridiagonal form, packed storage ................................................... nag_zhptrd (f08gsc)

complex rectangular band matrix to real upper bidiagonal form .................. nag_zgbbrd (f08lsc)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.41



complex rectangular matrix to real bidiagonal form:
apply unitary matrix ....................................................................................... nag_zunmbr (f08kuc)
form unitary matrix ....................................................................................... nag_zungbr (f08ktc)
reduce to bidiagonal form .............................................................................. nag_zgebrd (f08ksc)

real general matrix to upper Hessenberg form:
apply orthogonal matrix ................................................................................. nag_dormhr (f08ngc)
form orthogonal matrix ................................................................................. nag_dorghr (f08nfc)
reduce to Hessenberg form ........................................................................... nag_dgehrd (f08nec)

real rectangular band matrix to upper bidiagonal form ................................. nag_dgbbrd (f08lec)
real rectangular matrix to bidiagonal form:

apply orthogonal matrix ................................................................................. nag_dormbr (f08kgc)
form orthogonal matrix ................................................................................. nag_dorgbr (f08kfc)
reduce to bidiagonal form .............................................................................. nag_dgebrd (f08kec)

real symmetric band matrix to symmetric tridiagonal form ........................... nag_dsbtrd (f08hec)
real symmetric matrix to symmetric tridiagonal form:

apply orthogonal matrix ................................................................................. nag_dormtr (f08fgc)
apply orthogonal matrix, packed storage ...................................................... nag_dopmtr (f08ggc)
form orthogonal matrix ................................................................................. nag_dorgtr (f08ffc)
form orthogonal matrix, packed storage ......................................................... nag_dopgtr (f08gfc)
reduce to tridiagonal form .............................................................................. nag_dsytrd (f08fec)
reduce to tridiagonal form, packed storage ................................................... nag_dsptrd (f08gec)

Reduction of generalized eigenproblems to standard eigenproblems:
complex Hermitian-definite banded generalized eigenproblem Ax ¼ �Bx ...... nag_zhbgst (f08usc)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

nag_zhegst (f08ssc)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x, packed
storage ............................................................................................................... nag_zhpgst (f08tsc)
real symmetric-definite banded generalized eigenproblem Ax ¼ �Bx ............ nag_dsbgst (f08uec)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

nag_dsygst (f08sec)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x, packed storage

nag_dspgst (f08tec)
Solve reduced form of Sylvester matrix equation:

complex matrices ................................................................................................ nag_ztrsyl (f08qvc)
real matrices ...................................................................................................... nag_dtrsyl (f08qhc)

Split Cholesky factorization:
complex Hermitian positive-definite band matrix ............................................. nag_zpbstf (f08utc)
real symmetric positive-definite band matrix ................................................... nag_dpbstf (f08ufc)

6 Functions Withdrawn or Scheduled for Withdrawal

None.

7 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia URL: http://www.netlib.org/lapack/lug

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

Arioli M, Duff I S and De Rijk P P M (1989) On the augmented system approach to sparse least-squares
problems Numer. Math. 55 667–684

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Introduction – f08 NAG C Library Manual

f08.42 [NP3660/8]



Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J. Numer.
Anal. 10 241–256

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra Springer–
Verlag

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

[NP3660/8] f08.43 (last)


	f08 Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Linear Least-quares Problems
	2.2 Orthogonal Factorizations and Least-quares Problems
	2.2.1 QR factorization
	2.2.2 LQ factorization
	2.2.3 QR factorization with column pivoting
	2.2.4 Complete orthogonal factorization
	2.2.5 Other factorizations

	2.3 The Singular Value Decomposition
	2.4 The Singular Value Decomposition and Least-quares Problems
	2.5 Generalized Linear Least-quares Problems
	2.6 Generalized Orthogonal Factorization and Generalized Linear Least-quares Problems
	2.6.1 Generalized QR Factorization
	2.6.2 Generalized RQ Factorization
	2.6.3 Generalized Singular Value Decomposition (GSVD)

	2.7 Symmetric Eigenvalue Problems
	2.8 Generalized Symmetricefinite Eigenvalue Problems
	2.9 Packed Storage for Symmetric Matrices
	2.10 Band Matrices
	2.11 Nonsymmetric Eigenvalue Problems
	2.12 Generalized Nonsymmetric Eigenvalue Problem
	2.13 The Sylvester Equation
	2.14 Error and Perturbation Bounds and Condition Numbers
	2.14.1 Least-quares problems
	2.14.2 The singular value decomposition
	2.14.3 The symmetric eigenproblem
	2.14.4 The generalized symmetricefinite eigenproblem
	2.14.5 The non-ymmetric eigenproblem
	2.14.6 Balancing and condition for the non-ymmetric eigenproblem
	2.14.7 The generalized non-ymmetric eigenvalue problem
	2.14.8 Balancing the generalized eigenvalue problem
	2.14.9 Other problems

	2.15 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available Functions
	3.1.1 Computational functions
	3.1.1.1 Orthogonal factorizations
	3.1.1.2 Singular value problems
	3.1.1.3 Symmetric eigenvalue problems
	3.1.1.4 Generalized symmetricefinite eigenvalue problems
	3.1.1.5 Nonsymmetric eigenvalue problems
	3.1.1.6 Generalized non-ymmetric eigenvalue problems
	3.1.1.7 Sylvester’s equation


	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Tridiagonal and bidiagonal matrices
	3.3.5 Real diagonal elements of complex matrices
	3.3.6 Representation of orthogonal or unitary matrices

	3.4 Argument Conventions
	3.4.1 Option  arguments
	3.4.2 Problem dimensions


	4 Decision Trees
	4.1 General Purpose Functions (eigenvalues and eigenvectors)
	4.2 General Purpose Functions (singular value decomposition)

	5 Index
	6 Functions Withdrawn or Scheduled for Withdrawal
	7 References

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



